49 research outputs found
Interacting Ghost Dark Energy in Non-Flat Universe
A new dark energy model called "ghost dark energy" was recently suggested to
explain the observed accelerating expansion of the universe. This model
originates from the Veneziano ghost of QCD. The dark energy density is
proportional to Hubble parameter, , where is a
constant of order and is
QCD mass scale. In this paper, we extend the ghost dark energy model to the
universe with spatial curvature in the presence of interaction between dark
matter and dark energy. We study cosmological implications of this model in
detail. In the absence of interaction the equation of state parameter of ghost
dark energy is always and mimics a cosmological constant in the
late time, while it is possible to have provided the interaction is
taken into account. When , all previous results of ghost dark energy in
flat universe are recovered. To check the observational consistency, we use
Supernova type Ia (SNIa) Gold sample, shift parameter of Cosmic Microwave
Background radiation (CMB) and the Baryonic Acoustic Oscillation peak from
Sloan Digital Sky Survey (SDSS). The best fit values of free parameter at
confidence interval are: ,
and . Consequently
the total energy density of universe at present time in this model at 68% level
equates to .Comment: 19 pages, 9 figures. V2: Added comments, observational consequences,
references, figures and major corrections. Accepted for publication in
General Relativity and Gravitatio
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
Systematic Review of Medicine-Related Problems in Adult Patients with Atrial Fibrillation on Direct Oral Anticoagulants
New oral anticoagulant agents continue to emerge on the market and their safety requires assessment to provide evidence of their suitability for clinical use. There-fore, we searched standard databases to summarize the English language literature on medicine-related problems (MRPs) of direct oral anticoagulants DOACs (dabigtran, rivaroxban, apixban, and edoxban) in the treatment of adults with atri-al fibrillation. Electronic databases including Medline, Embase, International Pharmaceutical Abstract (IPA), Scopus, CINAHL, the Web of Science and Cochrane were searched from 2008 through 2016 for original articles. Studies pub-lished in English reporting MRPs of DOACs in adult patients with AF were in-cluded. Seventeen studies were identified using standardized protocols, and two reviewers serially abstracted data from each article. Most articles were inconclusive on major safety end points including major bleeding. Data on major safety end points were combined with efficacy. Most studies inconsistently reported adverse drug reactions and not adverse events or medication error, and no definitions were consistent across studies. Some harmful drug effects were not assessed in studies and may have been overlooked. Little evidence is provided on MRPs of DOACs in patients with AF and, therefore, further studies are needed to establish the safety of DOACs in real-life clinical practice
The influence of viral infection on a plankton ecosystem undergoing nutrient enrichment
It is increasingly recognised that viruses are a significant active component of oceanic plankton ecosystems. They play an important role in biogeochemical cycles as well as being implicated in observed patterns of species abundance and diversity. The influence of viral infection in plankton ecosystems is not fully understood. Here we use a number of well-founded mathematical models to investigate the interplay of the ecological and epidemiological interactions of plankton and viruses in the sea. Of particular interest is the role of nutrient on the population dynamics. Nutrient forcing has been suggested as a means of absorbing excess anthropogenic atmospheric carbon dioxide by stimulating increased phytoplankton primary productivity. Here we show that enriching nutrient levels in the sea may decrease the amount of infected phytoplankton species thereby additionally enhancing the efficiency of the biological pump, a means by which carbon is transferred from the atmosphere to the deep ocean
Inferring dispersal: a Bayesian approach to phylogeny-based island biogeography, with special reference to the Canary Islands
Aim Oceanic islands represent a special challenge to historical biogeographers because dispersal is typically the dominant process while most existing methods are based on vicariance. Here, we describe a new Bayesian approach to island biogeography that estimates island carrying capacities and dispersal rates based on simple Markov models of biogeographical processes. This is done in the context of simultaneous analysis of phylogenetic and distributional data across groups, accommodating phylogenetic uncertainty and making parameter estimates more robust. We test our models on an empirical data set of published phylogenies of Canary Island organisms to examine overall dispersal rates and correlation of rates with explanatory factors such as geographic proximity and area size.
Location Oceanic archipelagos with special reference to the Atlantic Canary Islands.
Methods The Canary Islands were divided into three island-groups, corresponding to the main magmatism periods in the formation of the archipelago, while non-Canarian distributions were grouped into a fourth 'mainland-island'. Dispersal between island groups, which were assumed constant through time, was modelled as a homogeneous, time-reversible Markov process, analogous to the standard models of DNA evolution. The stationary state frequencies in these models reflect the relative carrying capacity of the islands, while the exchangeability (rate) parameters reflect the relative dispersal rates between islands. We examined models of increasing complexity: Jukes–Cantor (JC), Equal-in, and General Time Reversible (GTR), with or without the assumption of stepping-stone dispersal. The data consisted of 13 Canarian phylogenies: 954 individuals representing 393 taxonomic (morphological) entities. Each group was allowed to evolve under its own DNA model, with the island-model shared across groups. Posterior distributions on island model parameters were estimated using Markov Chain Monte Carlo (MCMC) sampling, as implemented in MrBayes 4.0, and Bayes Factors were used to compare models.
Results The Equal-in step, the GTR, and the GTR step dispersal models showed the best fit to the data. In the Equal-in and GTR models, the largest carrying capacity was estimated for the mainland, followed by the central islands and the western islands, with the eastern islands having the smallest carrying capacity. The relative dispersal rate was highest between the central and eastern islands, and between the central and western islands. The exchange with the mainland was rare in comparison.
Main conclusions Our results confirm those of earlier studies suggesting that inter-island dispersal within the Canary Island archipelago has been more important in explaining diversification within lineages than dispersal between the continent and the islands, despite the close proximity to North Africa. The low carrying capacity of the eastern islands, uncorrelated with their size or age, fits well with the idea of a historically depauperate biota in these islands but more sophisticated models are needed to address the possible influence of major recent extinction events. The island models explored here can easily be extended to address other problems in historical biogeography, such as dispersal among areas in continental settings or reticulate area relationships.I.S. has been funded by the Swedish Research Council through Grant (621-2003-021). F.R. and P.V.D.M were funded by R01 GM-069801 (NIH). I.S. and F.R. were also funded by the NSF through the NESCent 'Biogeography Working Group'.Peer reviewe