656 research outputs found
Spin Wave Response in the Dilute Quasi-one Dimensional Ising-like Antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3
Inelastic neutron scattering profiles of spin waves in the dilute
quasi-one-dimensional Ising-like antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3 have
been investigated. Calculations of S^{xx}(Q,omega), based on an effective spin
Hamiltonian, accurately describe the experimental spin wave spectrum of the 2J
mode. The Q dependence of the energy of this spin wave mode follows the
analytical prediction
omega_{xx}(Q)=(2J)(1-5epsilon^{2}cos^{2}Qa+2epsilon^{2})^{1/2}, calculated by
Ishimura and Shiba using perturbation theory.Comment: 13 pages, 4 figure
Evidence for a Second Order Phase Transition in Glasses at Very Low Temperatures -- A Macroscopic Quantum State of Tunneling Systems
Dielectric measurements at very low temperature indicate that in a glass with
the eutectic composition BaO-AlO-SiO a phase transition occurs at
5.84 mK. Below that temperature small magnetic fields of the order of 10 T
cause noticeable changes of the dielectric constant although the glass is
insensitive to fields up to 20 T above 10 mK. The experimental findings may be
interpreted as the signature of the formation of a new phase in which many
tunneling systems perform a coherent motion resulting in a macroscopic wave
function.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
A planar Al-Si Schottky Barrier MOSFET operated at cryogenic temperatures
Schottky Barrier (SB)-MOSFET technology offers intriguing possibilities for
cryogenic nano-scale devices, such as Si quantum devices and superconducting
devices. We present experimental results on a novel device architecture where
the gate electrode is self-aligned with the device channel and overlaps the
source and drain electrodes. This facilitates a sub-5 nm gap between the
source/drain and channel, and no spacers are required. At cryogenic
temperatures, such devices function as p-MOS Tunnel FETs, as determined by the
Schottky barrier at the Al-Si interface, and as a further advantage,
fabrication processes are compatible with both CMOS and superconducting logic
technology.Comment: 6 pages, 4 figures, minor changes from the previous version
Meteorological influences on respirable fragment release from Chinese elm pollen
Exposure to airborne pollen from certain plants can cause allergic disease, leading to acute respiratory symptoms. Whole pollen grains, 15–90 μ m-sized particles, provoke the upper respiratory symptoms of rhinitis (hay fever), while smaller pollen fragments capable of depositing in the lower respiratory tract have been proposed as the trigger for asthma. In order to understand factors leading to pollen release and fragmentation we have examined the rupture of Chinese elm pollen under controlled laboratory conditions and in the outdoor atmosphere. Within 30 minutes after immersion in water, 70% of fresh Chinese pollen ruptures, rapidly expelling cytoplasm. Chinese elm flowers, placed in a controlled atmosphere chamber, emitted pollen and pollen debris after a sequential treatment of 98% relative humidity followed by drying and a gentle disturbance. Immunologic assays of antigenic proteins specific to elm pollens revealed that fine particulate material (D p < 2 μ m) collected from the chamber contained elm pollen antigens. In a temporal study of the outdoor urban atmosphere during the Chinese elm bloom season of 2004, peak concentrations of pollen and fine pollen fragments occurred at the beginning of the season when nocturnal relative humidity (RH) exceeded 90%. Following later periods of hot dry weather, pollen counts decreased to zero. The Chinese elm pollen fragments also decreased during the hot weather, but later displayed additional peaks following periods of more moderate RH and temperature, indicating that pollen counts underestimate total atmospheric pollen allergen concentrations. Pollen fragments thus increase the biogenic load in the atmosphere in a form that is no longer recognizable as pollen and, therefore, is not amenable to microscopic analysis. This raises the possibility of exposure of sensitive individuals to pollen allergens in the form of fine particles that can penetrate into the lower airways and pose potentially severe health risks.<br /
Out of equilibrium dynamics of a Quantum Heisenberg Spin Glass
We study the out of equilibrium dynamics of the infinite range quantum
Heisenberg spin glass model coupled to a thermal relaxation bath. The SU(2)
spin algebra is generalized to SU(N) and we analyse the large-N limit. The
model displays a dynamical phase transition between a paramagnetic and a glassy
phase. In the latter, the system remains out of equilibrium and displays an
aging phenomenon, which we characterize using both analytical and numerical
methods. In the aging regime, the quantum fluctuation-dissipation relation is
violated and replaced at very long time by its classical generalization, as in
models involving simple spin algebras studied previously. We also discuss the
effect of a finite coupling to the relaxation baths and their possible forms.
This work completes and justifies previous studies on this model using a static
approach.Comment: Minor change
Magnetic field effect on the dielectric constant of glasses: Evidence of disorder within tunneling barriers
The magnetic field dependence of the low frequency dielectric constant
(H) of a structural glass a - SiO2 + xCyHz was studied from 400 mK to 50
mK and for H up to 3T. Measurement of both the real and the imaginary parts of
is used to eliminate the difficult question of keeping constant the
temperature of the sample while increasing H: a non-zero (H) dependence is
reported in the same range as that one very recently reported on multicomponent
glasses. In addition to the recently proposed explanation based on
interactions, the reported (H) is interpreted quantitatively as a
consequence of the disorder lying within the nanometric barriers of the
elementary tunneling systems of the glass.Comment: latex Bcorrige1.tex, 5 files, 4 figures, 7 pages [SPEC-S02/009
Low temperature acoustic properties of amorphous silica and the Tunneling Model
Internal friction and speed of sound of a-SiO(2) was measured above 6 mK
using a torsional oscillator at 90 kHz, controlling for thermal decoupling,
non-linear effects, and clamping losses. Strain amplitudes e(A) = 10^{-8} mark
the transition between the linear and non-linear regime. In the linear regime,
excellent agreement with the Tunneling Model was observed for both the internal
friction and speed of sound, with a cut-off energy of E(min) = 6.6 mK. In the
non-linear regime, two different behaviors were observed. Above 10 mK the
behavior was typical for non-linear harmonic oscillators, while below 10 mK a
different behavior was found. Its origin is not understood.Comment: 1 tex file, 6 figure
Quantum TAP equations
We derive Thouless-Anderson-Palmer (TAP) equations for quantum disordered
systems. We apply them to the study of the paramagnetic and glassy phases in
the quantum version of the spherical p spin-glass model. We generalize several
useful quantities (complexity, threshold level, etc.) and various ideas
(configurational entropy crisis, etc), that have been developed within the
classical TAP approach, to quantum systems. The analysis of the quantum TAP
equations allows us to show that the phase diagram (temperature-quantum
parameter) of the p spin-glass model should be generic. In particular, we argue
that a crossover from a second order thermodynamic transition close to the
classical critical point to a first order thermodynamic transition close to the
quantum critical point is to be expected in a large class of systems.Comment: 29 pages, 4 fi
- …