12 research outputs found

    Intrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organization

    Get PDF
    Background In this body of work we investigate the synergistic-topological relationship during self-organization of the microtubule fiber in vitro, which is composed of straight, axially shifted and non-shifted, acentrosomal microtubules under crowded conditions. Methods We used electron microscopy to observe morphological details of ordered straight microtubules. This included the observation of the differences in length distribution between microtubules in ordered and non-ordered phases followed by the observation of the formation of interface gaps between axially shifted and ordered microtubules. We performed calculations to confirm that the principle of summation of pairwise electrostatic forces act between neighboring microtubules all their entire length. Results We have shown that the self-organization of a microtubule fiber imposes a variety of topological restrictions onto its constituting components: (a) tips of axially shifted neighboring microtubules are not in direct contact but rather create an ‘interface gap’; (b) fibers are always composed of a restricted number of microtubules at given solution conditions; (c) the average length of microtubules that constitute a fiber is always shorter than that of microtubules outside a fiber; (d) the length distribution of microtubules that constitute a fiber is narrower than that of microtubules outside a fiber and this effect is more pronounced at higher GTP-tubulin concentrations; (e) a cooperative motion of fiber microtubules due to actualization of the summation principle of pairwise electrostatic forces; (f) appearance of local GTP-tubulin depletion immediately in front of the tips of fiber microtubules. Conclusion Overall our data indicate that under crowded conditions in vitro, the self-organization of a microtubule fiber is governed by an intrinsic synergistic-topological mechanism, which in conjunction with the topological changes, GTP-tubulin depletion, and cooperative motion of fiber constituting microtubules, may generate and maintain a ‘synergistic-topological matrix’. Failure of the mechanism to form biologically feasible microtubule synergistic-topological matrix may, per se, precondition tumorigenesis. © 2014 BioMed Central Lt

    Splice variants of the Alzheimer's disease beta-secretase, BACE1

    No full text
    Strappe, P ORCiD: 0000-0003-0100-0558Cleavage of the amyloid precursor protein by enzymes commonly referred to as β- and γ-secretase constitute an important process in the pathogenesis of Alzheimer's disease (AD). The regulation of this process is therefore an important subject of investigation. Numerous sources of endogenous regulation have been identified, and one of these is the relative abundance and regulation of splice variants of the β-secretase, BACE1 (β-site amyloid precursor protein cleaving enzyme 1). In this review, we will briefly discuss the main characteristics of BACE1, review the different variants of this enzyme that have been identified to date, and highlight their possible implication in AD. © 2012 Springer-Verlag Berlin Heidelberg.Associated Grant Code:57039

    Splice variants of the Alzheimer's disease beta-secretase, BACE1

    No full text
    Cleavage of the amyloid precursor protein by enzymes commonly referred to as β- and γ-secretase constitute an important process in the pathogenesis of Alzheimer's disease (AD). The regulation of this process is therefore an important subject of investigation. Numerous sources of endogenous regulation have been identified, and one of these is the relative abundance and regulation of splice variants of the β-secretase, BACE1 (β-site amyloid precursor protein cleaving enzyme 1). In this review, we will briefly discuss the main characteristics of BACE1, review the different variants of this enzyme that have been identified to date, and highlight their possible implication in AD. © 2012 Springer-Verlag Berlin Heidelberg

    Unraveling the mechanistic complexity of Alzheimer's disease through systems biology

    Full text link
    © 2016 The Alzheimer's Association. Alzheimer's disease (AD) is a complex, multifactorial disease that has reached global epidemic proportions. The challenge remains to fully identify its underlying molecular mechanisms that will enable development of accurate diagnostic tools and therapeutics. Conventional experimental approaches that target individual or small sets of genes or proteins may overlook important parts of the regulatory network, which limits the opportunity of identifying multitarget interventions. Our perspective is that a more complete insight into potential treatment options for AD will only be made possible through studying the disease as a system. We propose an integrative systems biology approach that we argue has been largely untapped in AD research. We present key publications to demonstrate the value of this approach and discuss the potential to intensify research efforts in AD through transdisciplinary collaboration. We highlight challenges and opportunities for significant breakthroughs that could be made if a systems biology approach is fully exploited

    Up-regulation of matrix metallopeptidase 12 in motor neurons undergoing synaptic stripping

    No full text
    Axotomy of the rodent facial nerve represents a well-established model of synaptic plasticity. Post-traumatic “synaptic stripping” was originally discovered in this system. We report upregulation of matrix metalloproteinase MMP12 in regenerating motor neurons of the mouse and rat facial nucleus. Matrix metalloproteinases (matrix metallopeptidases, MMPs) are zinc-binding proteases capable of degrading components of the extracellular matrix and of regulating extracellular signaling networks including within synapses. MMP12 protein expression in facial motor neurons was enhanced following axotomy and peaked at day 3 after the operation. The peak of neuronal MMP12 expression preceded the peak of experimentally induced synaptic plasticity. At the same time, MMP12 redistributed intracellularly and became predominantly localized beneath the neuronal somatic cytoplasmic membrane. Both findings point to a role of MMP12 in the neuronal initiation of the synaptic stripping process. MMP12 is the first candidate molecule for such a trigger function and has potential as a therapeutic target. Moreover, since statins have been shown to increase the expression of MMP12, interference with synaptic stability may represent one mechanism by which these widely used drugs exert their side effects on higher CNS functions. © 2014 by Elsevier Ltd
    corecore