755 research outputs found
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
authorship. Significantly restructured and updated all sections; changes are
too numerous to be usefully described here. The number of references
increased from 186 to 32
Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults
Preparing for upcoming events, separating task-relevant from task-irrelevant information and efficiently responding to stimuli all require cognitive control. The adaptive recruitment of cognitive control depends on activity in the dopaminergic reward system as well as the frontoparietal control network. In healthy aging, dopaminergic neuromodulation is reduced, resulting in altered incentive-based recruitment of control mechanisms. In the present study, younger adults (18–28 years) and healthy older adults (66–89 years) completed an incentivized flanker task that included gain, loss, and neutral trials. Event-related potentials (ERPs) were recorded at the time of incentive cue and target presentation. We examined the contingent negative variation (CNV), implicated in stimulus anticipation and response preparation, as well as the P3, which is involved in the evaluation of visual stimuli. Both younger and older adults showed transient incentive-based modulation of CNV. Critically, cue-locked and target-locked P3s were influenced by transient and sustained effects of incentives in younger adults, while such modulation was limited to a sustained effect of gain incentives on cue-P3 in older adults.
Overall, these findings are in line with an age-related reduction in the flexible recruitment of preparatory and target-related cognitive control processes in the presence of motivational incentives
A Methodological Framework for the Evaluation of Syndromic Surveillance Systems: A Case Study of England
Background: Syndromic surveillance complements traditional public health surveillance by collecting and analysing health indicators in near real time. The rationale of syndromic surveillance is that it may detect health threats faster than traditional surveillance systems permitting more timely, and hence potentially more effective public health action. The effectiveness of syndromic surveillance largely relies on the methods used to detect aberrations. Very few studies have evaluated the performance of syndromic surveillance systems and consequently little is known about the types of events that such systems can and cannot detect. Methods: We introduce a framework for the evaluation of syndromic surveillance systems that can be used in any setting based upon the use of simulated scenarios. For a range of scenarios this allows the time and probability of to be determined and uncertainty is fully incorporated. In addition, we demonstrate how such a framework can model the benefits of increases in the number of centres reporting syndromic data and also determine the minimum size of outbreaks that can or cannot be detected. Here, we demonstrate its utility using simulations of national influenza outbreaks and localised outbreaks of cryptosporidiosis. Results: Influenza outbreaks are consistently detected with larger outbreaks being detected in a more timely manner. Small cryptosporidiosis outbreaks (<1000 symptomatic individuals) are unlikely to be detected. We also demonstrate the advantages of having multiple syndromic data streams (e.g. emergency attendance data, telephone helpline data, general practice consultation data) as different streams are able to detect different types outbreaks with different efficacy (e.g. emergency attendance data are useful for the detection of pandemic influenza but not for outbreaks of cryptosporidiosis). We also highlight that for any one disease, the utility of data streams may vary geographically, and that the detection ability of syndromic surveillance varies seasonally (e.g. an influenza outbreak starting in July is detected sooner than one starting later in the year). We argue that our framework constitutes a useful tool for public health emergency preparedness in multiple settings. Conclusions: The proposed framework allows the exhaustive evaluation of any syndromic surveillance system and constitutes a useful tool for emergency preparedness and response
Characteristic Evolution and Matching
I review the development of numerical evolution codes for general relativity
based upon the characteristic initial value problem. Progress in characteristic
evolution is traced from the early stage of 1D feasibility studies to 2D
axisymmetric codes that accurately simulate the oscillations and gravitational
collapse of relativistic stars and to current 3D codes that provide pieces of a
binary black hole spacetime. Cauchy codes have now been successful at
simulating all aspects of the binary black hole problem inside an artificially
constructed outer boundary. A prime application of characteristic evolution is
to extend such simulations to null infinity where the waveform from the binary
inspiral and merger can be unambiguously computed. This has now been
accomplished by Cauchy-characteristic extraction, where data for the
characteristic evolution is supplied by Cauchy data on an extraction worldtube
inside the artificial outer boundary. The ultimate application of
characteristic evolution is to eliminate the role of this outer boundary by
constructing a global solution via Cauchy-characteristic matching. Progress in
this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note:
updated version of arXiv:gr-qc/050809
Ligand-targeted liposomes directed against pathological vasculature
The development of liposomes targeted to angiogenic endothelial cells offers exciting prospects for intervention in cancer and inflammation. Several proteins are (strongly) over-expressed on angiogenic endothelial cells as compared to the quiescent endothelium, and could potentially serve as targets for site-specific drug delivery. In this contribution particular attention is given to the design of targeted long-circulating liposomes directed against the alpha v beta 3-integrin protein
Treatment of rats with a self-selected hyperlipidic diet, increases the lipid content of the main adipose tissue sites in a proportion similar to that of the lipids in the rest of organs and tissues
Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in"other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the"rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed
Methodology of calculation of construction and hydrodynamic parameters of a foam layer apparatus for mass-transfer processes
Промислова реалізація методу стабілізації газорідинного шару дозволяє значно розширити галузь застосування пінних апаратів і відкриває нові можливості інтенсифікації технологічних процесів з одночасним створенням маловідходних технологій. У статті встановлені основні параметри, що впливають на гідродинаміку пінних апаратів, розглянуті основні конструкції та режими роботи пінних апаратів. Виявлено зв'язок гідродинамічних параметрів. Розглянуто гідродинамічні закономірності пінного шару. Вказані фактори, що впливають на процес масообміну, як в газовій, так і в рідкій фазах. Проведений аналіз ряду досліджень показав, що перспективним напрямком інтенсифікації процесу масообміну є розробка апаратів з трифазним псевдозрідженим шаром зрошуваної насадки складних форм із сітчастих матеріалів. Отже, необхідне проведення спеціальних досліджень гідродинамічних режимів роботи апарату з сітчастою насадкою і визначенням параметрів, що впливають на швидкість переходу насадки з одного режиму в інший.Industrial implementation of the stabilization method of the gas-liquid layer can significantly expand the field of use of foaming apparatus and opens up new opportunities for intensifying technological processes with the simultaneous creation of low-waste technologies. The article establishes the basic parameters influencing the hydrodynamics of foam apparatus, considers the basic constructions and operating modes of foam apparatus. The connection of hydrodynamic parameters is revealed. The hydrodynamic laws of the foam layer are considered. The indicated factors affecting the process of mass transfer, both in the gas and in the liquid phases. The conducted analysis of a number of studies showed that the perspective direction of intensification of the mass transfer process is the development of apparatuses with a three-phase fluidized bed of an irrigated nozzle of complex forms with mesh materials
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
What Facilitates Return to Work? Patients Experiences 3 Years After Occupational Rehabilitation
Objective We have limited knowledge about the specific elements in an occupational rehabilitation programme that facilitate the process leading to return to work (RTW) as perceived by the patients. The aim of the study was to explore individual experiences regarding contributing factors to a successful RTW, 3 years after a resident occupational rehabilitation programme. Methods The study is based on interviews of 20 individuals who attended an occupational rehabilitation programme 3 years earlier. Ten informants had returned to work (RTW) and ten were receiving disability pension (DP). Data were analysed by systematic text condensation inspired by Giorgi’s phenomenological analysis. Results The core categories describing a successful RTW process included positive encounters, increased self-understanding and support from the surroundings. While the informants on DP emphasized being seen, heard and taken seriously by the professionals, the RTW group highlighted being challenged to increase self-understanding that promoted new acting in every-day life. Being challenged on self-understanding implied increased awareness of own identity, values and resources. Support from the surroundings included support from peer participants, employer and social welfare system. Conclusion Successful RTW processes seem to comprise positive encounters, opportunities for increased self-understanding and support from significant others. An explicit focus on topics like identity, own values and resources might improve the outcome of the rehabilitation process
- …
