784 research outputs found
Interleukin 7 from Maternal Milk Crosses the Intestinal Barrier and Modulates T- Cell Development in Offspring
Background
Breastfeeding protects against illnesses and death in hazardous environments, an
effect partly mediated by improved immune function. One hypothesis suggests that
factors within milk supplement the inadequate immune response of the offspring,
but this has not been able to account for a series of observations showing that
factors within maternally derived milk may supplement the development of the
immune system through a direct effect on the primary lymphoid organs. In a
previous human study we reported evidence suggesting a link between IL-7 in
breast milk and the thymic output of infants. Here we report evidence in mice of
direct action of maternally-derived IL-7 on T cell development in the offspring.
Methods and Findings
We have used recombinant IL-7 labelled with a fluorescent dye to trace the
movement in live mice of IL-7 from the stomach across the gut and into the
lymphoid tissues. To validate the functional ability of maternally derived IL-
7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets
of thymocytes and populations of peripheral T cells were significantly higher
than those found in knock-out mice receiving milk from IL-7 knock-out mothers.
Conclusions/Significance Our study provides direct evidence that interleukin 7,
a factor which is critical in the development of T lymphocytes, when maternally
derived can transfer across the intestine of the offspring, increase T cell
production in the thymus and support the survival of T cells in the peripheral
secondary lymphoid tissue
Vitamin D receptor ChIP-seq in primary CD4+ cells: relationship to serum 25-hydroxyvitamin D levels and autoimmune disease
PMCID: PMC3710212This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Comprehensive Analysis of Leukocytes, Vascularization and Matrix Metalloproteinases in Human Menstrual Xenograft Model
In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP) 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation
Childhood socioeconomic position and objectively measured physical capability levels in adulthood: a systematic review and meta-analysis
<p><b>Background:</b> Grip strength, walking speed, chair rising and standing balance time are objective measures of physical capability that characterise current health and predict survival in older populations. Socioeconomic position (SEP) in childhood may influence the peak level of physical capability achieved in early adulthood, thereby affecting levels in later adulthood. We have undertaken a systematic review with meta-analyses to test the hypothesis that adverse childhood SEP is associated with lower levels of objectively measured physical capability in adulthood.</p>
<p><b>Methods and Findings:</b> Relevant studies published by May 2010 were identified through literature searches using EMBASE and MEDLINE. Unpublished results were obtained from study investigators. Results were provided by all study investigators in a standard format and pooled using random-effects meta-analyses. 19 studies were included in the review. Total sample sizes in meta-analyses ranged from N = 17,215 for chair rise time to N = 1,061,855 for grip strength. Although heterogeneity was detected, there was consistent evidence in age adjusted models that lower childhood SEP was associated with modest reductions in physical capability levels in adulthood: comparing the lowest with the highest childhood SEP there was a reduction in grip strength of 0.13 standard deviations (95% CI: 0.06, 0.21), a reduction in mean walking speed of 0.07 m/s (0.05, 0.10), an increase in mean chair rise time of 6% (4%, 8%) and an odds ratio of an inability to balance for 5s of 1.26 (1.02, 1.55). Adjustment for the potential mediating factors, adult SEP and body size attenuated associations greatly. However, despite this attenuation, for walking speed and chair rise time, there was still evidence of moderate associations.</p>
<p><b>Conclusions:</b> Policies targeting socioeconomic inequalities in childhood may have additional benefits in promoting the maintenance of independence in later life.</p>
Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo
Histone deacetylation and DNA methylation have a central role in the control of gene expression in tumours, including transcriptional repression of tumour suppressor genes and genes involved in sensitivity to chemotherapy. Treatment of cisplatin-resistant cell lines with an inhibitor of DNA methyltransferases, 2-deoxy-5′azacytidine (decitabine), results in partial reversal of DNA methylation, re-expression of epigenetically silenced genes including hMLH1 and sensitisation to cisplatin both in vitro and in vivo. We have investigated whether the combination of decitabine and a clinically relevant inhibitor of histone deacetylase activity (belinostat, PXD101) can further increase the re-expression of genes epigenetically silenced by DNA methylation and enhance chemo-sensitisation in vivo at well-tolerated doses. The cisplatin-resistant human ovarian cell line A2780/cp70 has the hMLH1 gene methylated and is resistant to cisplatin both in vitro and when grown as a xenograft in mice. Treatment of A2780/cp70 with decitabine and belinostat results in a marked increase in expression of epigenetically silenced MLH1 and MAGE-A1 both in vitro and in vivo when compared with decitabine alone. The combination greatly enhanced the effects of decitabine alone on the cisplatin sensitivity of xenografts. As the dose of decitabine that can be given to patients and hence the maximum pharmacodynamic effect as a demethylating agent is limited by toxicity and eventual re-methylation of genes, we suggest that the combination of decitabine and belinostat could have a role in the efficacy of chemotherapy in tumours that have acquired drug resistance due to DNA methylation and gene silencing
PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro
Abstract Introduction Alterations in cell cycle regulators have been implicated in human malignancies including breast cancer. PD 0332991 is an orally active, highly selective inhibitor of the cyclin D kinases (CDK)4 and CDK6 with ability to block retinoblastoma (Rb) phosphorylation in the low nanomolar range. To identify predictors of response, we determined the in vitro sensitivity to PD 0332991 across a panel of molecularly characterized human breast cancer cell lines. Methods Forty-seven human breast cancer and immortalized cell lines representing the known molecular subgroups of breast cancer were treated with PD 0332991 to determine IC50 values. These data were analyzed against baseline gene expression data to identify genes associated with PD 0332991 response. Results Cell lines representing luminal estrogen receptor-positive (ER+) subtype (including those that are HER2 amplified) were most sensitive to growth inhibition by PD 0332991 while nonluminal/basal subtypes were most resistant. Analysis of variance identified 450 differentially expressed genes between sensitive and resistant cells. pRb and cyclin D1 were elevated and CDKN2A (p16) was decreased in the most sensitive lines. Cell cycle analysis showed G0/G1 arrest in sensitive cell lines and Western blot analysis demonstrated that Rb phosphorylation is blocked in sensitive lines but not resistant lines. PD 0332991 was synergistic with tamoxifen and trastuzumab in ER+ and HER2-amplified cell lines, respectively. PD 0332991 enhanced sensitivity to tamoxifen in cell lines with conditioned resistance to ER blockade. Conclusions These studies suggest a role for CDK4/6 inhibition in some breast cancers and identify criteria for patient selection in clinical studies of PD 0332991
Socioeconomic inequalities in cancer survival in Scotland 1986–2000
We analysed trends in 5-year survival of the 18 commonest cancers in Scotland diagnosed between 1986 and 2000 and followed up to 2004 in each of five deprivation groups based on patients postcode of residence at diagnosis. We estimated relative survival up to 5 years after diagnosis, adjusting for the different background mortality in each deprivation group by age, sex and calendar period. We estimated trends in overall survival and in the deprivation gap in survival up to 2004. Five-year survival improved for all malignancies except bladder cancer and was associated with a widening in the deprivation gap in survival. For 25 of 30 cancer–sex combinations examined, 5-year survival was lower among more deprived patients diagnosed during 1996–2000, and the deprivation gap in survival had widened since 1986–1990 for 15 of these 25 cancers, similar to the trends seen in England and Wales
Analysis of gene expression profiles in HeLa cells in response to overexpression or siRNA-mediated depletion of NASP
<p>Abstract</p> <p>Background</p> <p>NASP (Nuclear Autoantigenic Sperm Protein) is a linker histone chaperone required for normal cell division. Changes in NASP expression significantly affect cell growth and development; loss of gene function results in embryonic lethality. However, the mechanism by which NASP exerts its effects in the cell cycle is not understood. To understand the pathways and networks that may involve NASP function, we evaluated gene expression in HeLa cells in which NASP was either overexpressed or depleted by siRNA.</p> <p>Methods</p> <p>Total RNA from HeLa cells overexpressing NASP or depleted of NASP by siRNA treatment was converted to cRNA with incorporation of Cy5-CTP (experimental samples), or Cy3-CTP (control samples). The labeled cRNA samples were hybridized to whole human genome microarrays (Agilent Technologies, Wilmington, Delaware, USA). Various gene expression analysis techniques were employed: Significance Analysis of Microarrays (SAM), Expression Analysis Systematic Explorer (EASE), and Ingenuity Pathways Analysis (IPA).</p> <p>Results</p> <p>From approximately 36 thousand genes present in a total human genome microarray, we identified a set of 47 up-regulated and 7 down-regulated genes as a result of NASP overexpression. Similarly we identified a set of 56 up-regulated and 71 down-regulated genes as a result of NASP siRNA treatment. Gene ontology, molecular network and canonical pathway analysis of NASP overexpression demonstrated that the most significant changes were in proteins participating in organismal injury, immune response, and cellular growth and cancer pathways (major "hubs": TNF, FOS, EGR1, NFκB, IRF7, STAT1, IL6). Depletion of NASP elicited the changed expression of proteins involved in DNA replication, repair and development, followed by reproductive system disease, and cancer and cell cycle pathways (major "hubs": E2F8, TP53, FGF, FSH, FST, hCG, NFκB, TRAF6).</p> <p>Conclusion</p> <p>This study has demonstrated that NASP belongs to a network of genes and gene functions that are critical for cell survival. We have confirmed the previously reported interactions between NASP and HSP90, HSP70, histone H1, histone H3, and TRAF6. Overexpression and depletion of NASP identified overlapping networks that included TNF as a core protein, confirming that both high and low levels of NASP are detrimental to cell cycle progression. Networks with cancer-related functions had the highest significance, however reproductive networks containing follistatin and FSH were also significantly affected, which confirmed NASP's important role in reproductive tissues. This study revealed that, despite some overlap, each response was associated with a unique gene signature and placed NASP in important cell regulatory networks.</p
Child Fitness and Father’s BMI Are Important Factors in Childhood Obesity: A School Based Cross-Sectional Study
BACKGROUND: This study examines obesity and factors associated with obesity in children aged 11-13 years in the UK. METHODS: 1147 children from ten secondary schools participated in a health survey that included blood samples, fitness test and anthropometric measures. Factors associated with obesity were examined using multilevel logistic regression. FINDINGS: Of the children examined (490 male; 657 female) a third were overweight, 1 in 6 had elevated blood pressure, more than 1 in 10 had high cholesterol, 58% consumed more fat than recommended, whilst 37% were classified as unfit. Children in deprived areas had a higher proportion of risk factors; for example, they had higher blood pressure (20% (deprived) compared to 11% (non-deprived), difference: 9.0% (95%CI: 4.7%-13.4%)). Obesity is associated with risk factors for heart disease and diabetes. Maintaining fitness is associated with a reduction in the risk factors for heart disease (high blood pressure and cholesterol) but not on risk factors for diabetes (insulin levels). In order of importance, the main risk factors for childhood obesity are being unfit, having an obese father, and being large at birth. CONCLUSION: The high proportion of children with risk factors suggests future interventions need to focus on community and policy change to shift the population norm rather than targeting the behaviour of high risk individuals. Interventions need to focus on mothers' lifestyle in pregnancy, fathers' health, as well as promoting fitness among children. Obesity was not associated with deprivation. Therefore, strategies should be adopted in both deprived and non deprived areas
- …