1,507 research outputs found
A Feynman integral in Lifshitz-point and Lorentz-violating theories in R<sup>D</sup> âš R<i><sup>m</sup></i>
We evaluate a 1-loop, 2-point, massless Feynman integral ID,m(p,q) relevant for perturbative field theoretic calculations in strongly anisotropic d=D+m dimensional spaces given by the direct sum RD âš Rm . Our results are valid in the whole convergence region of the integral for generic (noninteger) codimensions D and m. We obtain series expansions of ID,m(p,q) in terms of powers of the variable X:=4p2/q4, where p=|p|, q=|q|, p Đ RD, q Đ Rm, and in terms of generalised hypergeometric functions 3F2(âX), when X<1. These are subsequently analytically continued to the complementary region Xâ„1. The asymptotic expansion in inverse powers of X1/2 is derived. The correctness of the results is supported by agreement with previously known special cases and extensive numerical calculations
Recommended from our members
Altered brain connectivity in sudden unexpected death in epilepsy (SUDEP) revealed using resting-state fMRI.
The circumstances surrounding SUDEP suggest autonomic or respiratory collapse, implying central failure of regulation or recovery. Characterisation of the communication among brain areas mediating such processes may shed light on mechanisms and noninvasively indicate risk. We used rs-fMRI to examine network properties among brain structures in people with epilepsy who suffered SUDEP (nâŻ=âŻ8) over an 8-year follow-up period, compared with matched high- and low-risk subjects (nâŻ=âŻ16/group) who did not suffer SUDEP during that period, and a group of healthy controls (nâŻ=âŻ16). Network analysis was employed to explore connectivity within a 'regulatory-subnetwork' of brain regions involved in autonomic and respiratory regulation, and over the whole-brain. Modularity, the extent of network organization into separate modules, was significantly reduced in the regulatory-subnetwork, and the whole-brain, in SUDEP and high-risk. Increased participation, a local measure of inter-modular belonging, was evident in SUDEP and high-risk groups, particularly among thalamic structures. The medial prefrontal thalamus was increased in SUDEP compared with all other control groups, including high-risk. Patterns of hub topology were similar in SUDEP and high-risk, but were more extensive in low-risk patients, who displayed greater hub prevalence and a radical reorganization of hubs in the subnetwork. SUDEP is associated with reduced functional organization among cortical and sub-cortical brain regions mediating autonomic and respiratory regulation. Living high-risk subjects demonstrated similar patterns, suggesting such network measures may provide prospective risk-indicating value, though a crucial difference between SUDEP and high-risk was altered connectivity of the medial thalamus in SUDEP, which was also elevated compared with all sub-groups. Disturbed thalamic connectivity may reflect a potential non-invasive marker of elevated SUDEP risk
Recommended from our members
PRIMARYâPRODUCTIVITY GRADIENTS AND SHORTâTERM POPULATION DYNAMICS IN OPEN SYSTEMS
We present three models representing the trophic and behavioral dynamics of a simple food chain (primary producers, grazers, and predators) at temporal scales shorter than the scale of consumer reproduction, and at the spatial scales typically employed in field experiments. These models incorporate flexible behavioral responses of organisms to their predators and resources in spatially heterogeneous environments that are open to immigration and emigration. The basic models include passive immigration at all trophic levels, producer growth rates and losses to grazer consumption, grazer emigration rate as a behavioral response to producer and predator densities, grazer losses to predator consumption, and predator emigration as a function of grazer density. We model this system as: (1) a set of ordinary differential equations ('well-mixed model'); (2) a set of partial differential equations describing a population of discrete grazers foraging on discrete patches of primary producers ('discrete-grazer model'); and (3) a set of simulation rules describing the movement and foraging of individual grazers and the growth of primary producers on discrete patches in explicit space ('individual-based model'). The ordinary differential-equation models produced similar results to individual-based models with well-mixed producers, and the discrete-grazer and individual-based models produced similar results when grazers possessed a long-term memory of patch reward rates. The well-mixed and discrete-grazer models thus represent specific, limiting cases of the general individual-based model. Multiple equilibria and sustained oscillations are possible but are less likely in the discrete-grazer and individual-based models than in the well-mixed model, because localized foraging of discrete grazers leads to the rapid development of spatial heterogeneity in producer biomass and, hence, to a decrease in overall primary production. All models predict that stable equilibrium densities of all trophic levels increase with enrichment, provided grazers increase their emigration rates as predator density increases. If increasing predator density leads to decreasing grazer-emigration rates, predator and grazer densities increase, but producer biomass may increase or decrease with enrichment. These results contrast with predictions from models that assume ideal free distributions of grazers and/or predators with respect to their resources. Our models also predict that densities at all trophic levels will increase with increasing producer immigration, and that producer density will decline with increasing grazer immigration and increase with increasing predator immigration. Our qualitative findings on enrichment are used to interpret an experiment dealing with the short-term dynamics of a stream community open to grazers and predators
Neuroimaging of Sudden Unexpected Death in Epilepsy (SUDEP): Insights From Structural and Resting-State Functional MRI Studies
The elusive nature of sudden unexpected death in epilepsy (SUDEP) has led to investigations of mechanisms and identification of biomarkers of this fatal scenario that constitutes the leading cause of premature death in epilepsy. In this short review, we compile evidence from structural and functional neuroimaging that demonstrates alterations to brain structures and networks involved in central autonomic and respiratory control in SUDEP and those at elevated risk. These findings suggest that compromised central control of vital regulatory processes may contribute to SUDEP. Both structural changes and dysfunctional interactions indicate potential mechanisms underlying the fatal event; contributions to individual risk prediction will require further study. The nature and sites of functional disruptions suggest potential non-invasive interventions to overcome failing processes
Altered brain connectivity in sudden unexpected death in epilepsy (SUDEP) revealed using resting-state fMRI
The circumstances surrounding SUDEP suggest autonomic or respiratory collapse, implying central failure of regulation or recovery. Characterisation of the communication among brain areas mediating such processes may shed light on mechanisms and noninvasively indicate risk.
We used rs-fMRI to examine network properties among brain structures in people with epilepsy who suffered SUDEP (nâŻ=âŻ8) over an 8-year follow-up period, compared with matched high- and low-risk subjects (nâŻ=âŻ16/group) who did not suffer SUDEP during that period, and a group of healthy controls (nâŻ=âŻ16). Network analysis was employed to explore connectivity within a âregulatory-subnetworkâ of brain regions involved in autonomic and respiratory regulation, and over the whole-brain.
Modularity, the extent of network organization into separate modules, was significantly reduced in the regulatory-subnetwork, and the whole-brain, in SUDEP and high-risk. Increased participation, a local measure of inter-modular belonging, was evident in SUDEP and high-risk groups, particularly among thalamic structures. The medial prefrontal thalamus was increased in SUDEP compared with all other control groups, including high-risk. Patterns of hub topology were similar in SUDEP and high-risk, but were more extensive in low-risk patients, who displayed greater hub prevalence and a radical reorganization of hubs in the subnetwork.
SUDEP is associated with reduced functional organization among cortical and sub-cortical brain regions mediating autonomic and respiratory regulation. Living high-risk subjects demonstrated similar patterns, suggesting such network measures may provide prospective risk-indicating value, though a crucial difference between SUDEP and high-risk was altered connectivity of the medial thalamus in SUDEP, which was also elevated compared with all sub-groups. Disturbed thalamic connectivity may reflect a potential non-invasive marker of elevated SUDEP risk
Distinct Patterns of Brain Metabolism in Patients at Risk of Sudden Unexpected Death in Epilepsy
Objective: To characterize regional brain metabolic differences in patients at high risk of sudden unexpected death in epilepsy (SUDEP), using fluorine-18-fluorodeoxyglucose positron emission tomography (18FDG-PET). Methods: We studied patients with refractory focal epilepsy at high (n = 56) and low (n = 69) risk of SUDEP who underwent interictal 18FDG-PET as part of their pre-surgical evaluation. Binary SUDEP risk was ascertained by thresholding frequency of focal to bilateral tonic-clonic seizures (FBTCS). A whole brain analysis was employed to explore regional differences in interictal metabolic patterns. We contrasted these findings with regional brain metabolism more directly related to frequency of FBTCS. Results: Regions associated with cardiorespiratory and somatomotor regulation differed in interictal metabolism. In patients at relatively high risk of SUDEP, fluorodeoxyglucose (FDG) uptake was increased in the basal ganglia, ventral diencephalon, midbrain, pons, and deep cerebellar nuclei; uptake was decreased in the left planum temporale. These patterns were distinct from the effect of FBTCS frequency, where increasing frequency was associated with decreased uptake in bilateral medial superior frontal gyri, extending into the left dorsal anterior cingulate cortex. Significance: Regions critical to cardiorespiratory and somatomotor regulation and to recovery from vital challenges show altered interictal metabolic activity in patients with frequent FBTCS considered to be at relatively high-risk of SUDEP, and shed light on the processes that may predispose patients to SUDEP
A Neural Spiking Approach Compared to Deep Feedforward Networks on Stepwise Pixel Erasement
In real world scenarios, objects are often partially occluded. This requires
a robustness for object recognition against these perturbations. Convolutional
networks have shown good performances in classification tasks. The learned
convolutional filters seem similar to receptive fields of simple cells found in
the primary visual cortex. Alternatively, spiking neural networks are more
biological plausible. We developed a two layer spiking network, trained on
natural scenes with a biologically plausible learning rule. It is compared to
two deep convolutional neural networks using a classification task of stepwise
pixel erasement on MNIST. In comparison to these networks the spiking approach
achieves good accuracy and robustness.Comment: Published in ICANN 2018: Artificial Neural Networks and Machine
Learning - ICANN 2018
https://link.springer.com/chapter/10.1007/978-3-030-01418-6_25 The final
authenticated publication is available online at
https://doi.org/10.1007/978-3-030-01418-6_2
Quantitative evaluation of oligonucleotide surface concentrations using polymerization-based amplification
Quantitative evaluation of minimal polynucleotide concentrations has become a critical analysis among a myriad of applications found in molecular diagnostic technology. Development of high-throughput, nonenzymatic assays that are sensitive, quantitative and yet feasible for point-of-care testing are thus beneficial for routine implementation. Here, we develop a nonenzymatic method for quantifying surface concentrations of labeled DNA targets by coupling regulated amounts of polymer growth to complementary biomolecular binding on array-based biochips. Polymer film thickness measurements in the 20â220 nm range vary logarithmically with labeled DNA surface concentrations over two orders of magnitude with a lower limit of quantitation at 60 molecules/ÎŒm2 (âŒ106 target molecules). In an effort to develop this amplification method towards compatibility with fluorescence-based methods of characterization, incorporation of fluorescent nanoparticles into the polymer films is also evaluated. The resulting gains in fluorescent signal enable quantification using detection instrumentation amenable to point-of-care settings
Automated Analysis of Risk Factors for Postictal Generalized EEG Suppression
Rationale: Currently, there is some ambiguity over the role of postictal generalized electro-encephalographic suppression (PGES) as a biomarker in sudden unexpected death in epilepsy (SUDEP). Visual analysis of PGES, known to be subjective, may account for this. In this study, we set out to perform an analysis of PGES presence and duration using a validated signal processing tool, specifically to examine the association between PGES and seizure features previously reported to be associated with visually analyzed PGES.
Methods: This is a prospective, multicenter epilepsy monitoring study of autonomic and breathing biomarkers of SUDEP in adult patients with intractable epilepsy. We studied videoelectroencephalogram (vEEG) recordings of generalized convulsive seizures (GCS) in a cohort of patients in whom respiratory and vEEG recording were carried out during the evaluation in the epilepsy monitoring unit. A validated automated EEG suppression detection tool was used to determine presence and duration of PGES.
Results: We studied 148 GCS in 87 patients. PGES occurred in 106/148 (71.6%) seizures in 70/87 (80.5%) of patients. PGES mean duration was 38.7 ± 23.7 (37; 1â169) seconds. Presence of tonic phase during GCS, including decerebration, decortication and hemi-decerebration, were 8.29 (CI 2.6â26.39, p = 0.0003), 7.17 (CI 1.29â39.76, p = 0.02), and 4.77 (CI 1.25â18.20, p = 0.02) times more likely to have PGES, respectively. In addition, presence of decerebration (p = 0.004) and decortication (p = 0.02), older age (p = 0.009), and hypoxemia duration (p = 0.03) were associated with longer PGES durations.
Conclusions: In this study, we confirmed observations made with visual analysis, that presence of tonic phase during GCS, longer hypoxemia, and older age are reliably associated with PGES. We found that of the different types of tonic phase posturing, decerebration has the strongest association with PGES, followed by decortication, followed by hemi-decerebration. This suggests that these factors are likely indicative of seizure severity and may or may not be associated with SUDEP. An automated signal processing tool enables objective metrics, and may resolve apparent ambiguities in the role of PGES in SUDEP and seizure severity studies
Nonthermal Emission from Star-Forming Galaxies
The detections of high-energy gamma-ray emission from the nearby starburst
galaxies M82 & NGC253, and other local group galaxies, broaden our knowledge of
star-driven nonthermal processes and phenomena in non-AGN star-forming
galaxies. We review basic aspects of the related processes and their modeling
in starburst galaxies. Since these processes involve both energetic electrons
and protons accelerated by SN shocks, their respective radiative yields can be
used to explore the SN-particle-radiation connection. Specifically, the
relation between SN activity, energetic particles, and their radiative yields,
is assessed through respective measures of the particle energy density in
several star-forming galaxies. The deduced energy densities range from O(0.1)
eV/cm^3 in very quiet environments to O(100) eV/cm^3 in regions with very high
star-formation rates.Comment: 17 pages, 5 figures, to be published in Astrophysics and Space
Science Proceeding
- âŠ