37 research outputs found
The problem of shot selection in basketball
In basketball, every time the offense produces a shot opportunity the player
with the ball must decide whether the shot is worth taking. In this paper, I
explore the question of when a team should shoot and when they should pass up
the shot by considering a simple theoretical model of the shot selection
process, in which the quality of shot opportunities generated by the offense is
assumed to fall randomly within a uniform distribution. I derive an answer to
the question "how likely must the shot be to go in before the player should
take it?", and show that this "lower cutoff" for shot quality depends
crucially on the number of shot opportunities remaining (say, before the
shot clock expires), with larger demanding that only higher-quality shots
should be taken. The function is also derived in the presence of a
finite turnover rate and used to predict the shooting rate of an
optimal-shooting team as a function of time. This prediction is compared to
observed shooting rates from the National Basketball Association (NBA), and the
comparison suggests that NBA players tend to wait too long before shooting and
undervalue the probability of committing a turnover.Comment: 7 pages, 2 figures; comparison to NBA data adde
The Hot (Invisible?) Hand: Can Time Sequence Patterns of Success/Failure in Sports Be Modeled as Repeated Random Independent Trials?
The long lasting debate initiated by Gilovich, Vallone and Tversky in is revisited: does a “hot hand” phenomenon exist in sports? Hereby we come back to one of the cases analyzed by the original study, but with a much larger data set: all free throws taken during five regular seasons () of the National Basketball Association (NBA). Evidence supporting the existence of the “hot hand” phenomenon is provided. However, while statistical traces of this phenomenon are observed in the data, an open question still remains: are these non random patterns a result of “success breeds success” and “failure breeds failure” mechanisms or simply “better” and “worse” periods? Although free throws data is not adequate to answer this question in a definite way, we speculate based on it, that the latter is the dominant cause behind the appearance of the “hot hand” phenomenon in the data
“Hot Hand” on Strike: Bowling Data Indicates Correlation to Recent Past Results, Not Causality
Recently, the “hot hand” phenomenon regained interest due to the availability and accessibility of large scale data sets from the world of sports. In support of common wisdom and in contrast to the original conclusions of the seminal paper about this phenomenon by Gilovich, Vallone and Tversky in 1985, solid evidences were supplied in favor of the existence of this phenomenon in different kinds of data. This came after almost three decades of ongoing debates whether the “hot hand” phenomenon in sport is real or just a mis-perception of human subjects of completely random patterns present in reality. However, although this phenomenon was shown to exist in different sports data including basketball free throws and bowling strike rates, a somehow deeper question remained unanswered: are these non random patterns results of causal, short term, feedback mechanisms or simply time fluctuations of athletes performance. In this paper, we analyze large amounts of data from the Professional Bowling Association(PBA). We studied the results of the top 100 players in terms of the number of available records (summed into more than 450,000 frames). By using permutation approach and dividing the analysis into different aggregation levels we were able to supply evidence for the existence of the “hot hand” phenomenon in the data, in agreement with previous studies. Moreover, by using this approach, we were able to demonstrate that there are, indeed, significant fluctuations from game to game for the same player but there is no clustering of successes (strikes) and failures (non strikes) within each game. Thus we were lead to the conclusion that bowling results show correlation to recent past results but they are not influenced by them in a causal manner
Nash Social Welfare in Selfish and Online Load Balancing
In load balancing problems there is a set of clients, each wishing to select
a resource from a set of permissible ones, in order to execute a certain task.
Each resource has a latency function, which depends on its workload, and a
client's cost is the completion time of her chosen resource. Two fundamental
variants of load balancing problems are {\em selfish load balancing} (aka. {\em
load balancing games}), where clients are non-cooperative selfish players aimed
at minimizing their own cost solely, and {\em online load balancing}, where
clients appear online and have to be irrevocably assigned to a resource without
any knowledge about future requests. We revisit both selfish and online load
balancing under the objective of minimizing the {\em Nash Social Welfare},
i.e., the geometric mean of the clients' costs. To the best of our knowledge,
despite being a celebrated welfare estimator in many social contexts, the Nash
Social Welfare has not been considered so far as a benchmarking quality measure
in load balancing problems. We provide tight bounds on the price of anarchy of
pure Nash equilibria and on the competitive ratio of the greedy algorithm under
very general latency functions, including polynomial ones. For this particular
class, we also prove that the greedy strategy is optimal as it matches the
performance of any possible online algorithm
