9 research outputs found

    Analysis of single nucleotide polymorphisms in the FAS and CTLA-4 genes of peripheral T-cell lymphomas

    Get PDF
    Angioimmunoblastic T-cell lymphoma (AILT) represents a subset of T-cell lymphomas but resembles an autoimmune disease in many of its clinical aspects. Despite the phenotype of effector T-cells and high expression of FAS and CTLA-4 receptor molecules, tumor cells fail to undergo apoptosis. We investigated single nucleotide polymorphisms (SNPs) of the FAS and CTLA-4 genes in 94 peripheral T-cell lymphomas. Although allelic frequencies of some FAS SNPs were enriched in AILT cases, none of these occurred at a different frequency compared to healthy individuals. Therefore, SNPs in these genes are not associated with the apoptotic defect and autoimmune phenomena in AILT

    Dominant inhibition of Fas ligand-mediated apoptosis due to a heterozygous mutation associated with autoimmune lymphoproliferative syndrome (ALPS) Type Ib

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of lymphocyte homeostasis and immunological tolerance due primarily to genetic defects in Fas (CD95/APO-1; <it>TNFRSF6</it>), a cell surface receptor that regulates apoptosis and its signaling apparatus.</p> <p>Methods:</p> <p>Fas ligand gene mutations from ALPS patients were identified through cDNA and genomic DNA sequencing. Molecular and biochemical assessment of these mutant Fas ligand proteins were carried out by expressing the mutant FasL cDNA in mammalian cells and analysis its effects on Fas-mediated programmed cell death.</p> <p>Results:</p> <p>We found an ALPS patient that harbored a heterozygous A530G mutation in the FasL gene that replaced Arg with Gly at position 156 in the protein's extracellular Fas-binding region. This produced a dominant-interfering FasL protein that bound to the wild-type FasL protein and prevented it from effectively inducing apoptosis.</p> <p>Conclusion:</p> <p>Our data explain how a naturally occurring heterozygous human FasL mutation can dominantly interfere with normal FasL apoptotic function and lead to an ALPS phenotype, designated Type Ib.</p

    Association of a microsatellite in FASL to type II diabetes and of the FAS-670G&gt;A genotype to insulin resistance

    No full text
    Type II diabetes is caused by a failure of the pancreatic beta-cells to compensate for insulin resistance leading to hyperglycaemia. There is evidence for an essential role of an increased beta-cell apoptosis in type II diabetes. High glucose concentrations induce IL-1 beta production in human beta-cells, Fas expression and concomitant apoptosis owing to a constitutive expression of FasL. FASL and FAS map to loci linked to type II diabetes and estimates of insulin resistance, respectively. We have tested two functional promoter polymorphisms, FAS-670 G > A and FASL-844C > T as well as a microsatellite in the 3' UTR of FASL for association to type II diabetes in 549 type II diabetic patients and 525 normal-glucose-tolerant (NGT) control subjects. Furthermore, we have tested these polymorphisms for association to estimates of beta-cell function and insulin resistance in NGT subjects. We found significant association to type II diabetes for the allele distribution of the FASL microsatellite (P-value 0.02, Bonferroni corrected). The FAS-670G > A was associated with homeostasis model assessment insulin resistance index and body mass index (P-values 0.02 and 0.02). We conclude that polymorphisms of FASL and FAS associate with type II diabetes and estimates of insulin resistance in Danish white subjects

    Fas/FasL gene polymorphism in patients with Hashimoto’s thyroiditis in Turkish population

    No full text
    WOS: 000391430700011PubMed ID: 27572459Objective Hashimoto's disease is a polygenic disorder with complex etiopathogenesis. Apoptosis is proposed as one of its mechanisms. The Fas/Fas ligand cascade represents a major pathway initiating apoptosis. This study aims to evaluate the influence of Fas and FasL gene polymorphism in Hashimoto's thyroiditis in Turkish population. Materials and methods A total of 112 patients with Hashimoto's thyroiditis and 112 cases of healthy control people were included in this study. The evaluation of genotype for Fas -670 A/G and FasL 843 C/T gene polymorphism was performed by using PCR-RFLP method. Results The FAS genotype and gene allele frequency distribution did differ between the control group (AA 36.6 %, AG 50.0 %, GG 13.4 %, A 61.6 %, G 38.4 %) and the Hashimoto's thyroiditis patients (AA 21.4 %, AG 50.9 %, GG 27.7 %, A 46.9 %, G 53.1 %) (p 0.05). Conclusions Gene polymorphism of Fas and G allele frequency may play a role in the regulation of apoptosis in thyroid autoimmune disorders. There is a need for further studies to clarify the genetic role of apoptosis in HT

    Lobster processing by-products as valuable bioresource of marine functional ingredients, nutraceuticals, and pharmaceuticals

    No full text

    Genetics of type 1 diabetes mellitus

    No full text
    corecore