71 research outputs found

    Development of a Consensus Statement for the Definition, Diagnosis, and Treatment of Acute Exacerbations of Idiopathic Pulmonary Fibrosis Using the Delphi Technique.

    Get PDF
    © 2015, The Author(s).Introduction: There is a lack of agreed and established guidelines for the treatment of acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF). This reflects, in part, the limited evidence-base underpinning the management of AE-IPF. In the absence of high-quality evidence, the aim of this research was to develop a clinician-led consensus statement for the definition, diagnosis and treatment of AE-IPF. Methods: A literature review was conducted to obtain published material on the definition and treatment of AE-IPF. The results of this review were circulated to an online panel of clinicians for review. Statements were then shared with ten expert respiratory clinicians who regularly treat patients with IPF. A Delphi technique was then used to develop a consensus statement for the definition, diagnosis and treatment of AE-IPF. During the first round of review, clinicians rated the clarity of each statement, the extent to which the statement should be included and provided comments. In two subsequent rounds of review, clinicians were provided with the group median inclusion rating for each statement, and any revised wording of statements to aid clarity. Clinicians were asked to repeat the clarity and inclusion ratings for the revised statements. Results: The literature review, online panel discussion, and face-to-face meeting generated 65 statements covering the definition, diagnosis, and management of AE-IPF. Following three rounds of blind review, 90% of clinicians agreed 39 final statements. These final statements included a definition of AE-IPF, approach to diagnosis, and treatment options, specifically: supportive measures, use of anti-microbials, immunosuppressants, anti-coagulants, anti-fibrotic therapy, escalation, transplant management, and long-term management including discharge planning. Conclusion: This clinician-led consensus statement establishes the ‘best practice’ for the management and treatment of AE-IPF based on current knowledge, evidence, and available treatments. Funding: Boehringer Ingelheim Ltd., Bracknell, West Berkshire, UK

    The pan-PPAR agonist lanifibranor reduces development of lung fibrosis and attenuates cardiorespiratory manifestations in a transgenic mouse model of systemic sclerosis

    Get PDF
    Background: The TβRII∆k-fib transgenic (TG) mouse model of scleroderma replicates key fibrotic and vasculopathic complications of systemic sclerosis through fibroblast-directed upregulation of TGFβ signalling. We have examined peroxisome proliferator-activated receptor (PPAR) pathway perturbation in this model and explored the impact of the pan-PPAR agonist lanifibranor on the cardiorespiratory phenotype. Methods: PPAR pathway gene and protein expression differences from TG and WT sex-matched littermate mice were determined at baseline and following administration of one of two doses of lanifibranor (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks. The prevention of bleomycin-induced lung fibrosis and SU5416-induced pulmonary hypertension by lanifibranor was explored. Results: Gene expression data were consistent with the downregulation of the PPAR pathway in the TβRII∆k-fib mouse model. TG mice treated with high-dose lanifibranor demonstrated significant protection from lung fibrosis after bleomycin and from right ventricular hypertrophy following induction of pulmonary hypertension by SU5416, despite no significant change in right ventricular systolic pressure. Conclusions: In the TβRII∆k-fib mouse strain, treatment with 100 mg/kg lanifibranor reduces the development of lung fibrosis and right ventricular hypertrophy induced by bleomycin or SU5416, respectively. Reduced PPAR activity may contribute to the exaggerated fibroproliferative response to tissue injury in this transgenic model of scleroderma and its pulmonary complications

    Undifferentiated Connective Tissue Disease-Associated Interstitial Lung Disease: Changes in Lung Function

    Get PDF
    Undifferentiated connective tissue disease (UCTD) is a distinct clinical entity that may be accompanied by interstitial lung disease (ILD). The natural history of UCTD-ILD is unknown. We hypothesized that patients with UCTD-ILD would be more likely to have improvement in lung function than those with idiopathic pulmonary fibrosis (IPF) during longitudinal follow-up. We identified subjects enrolled in the UCSF ILD cohort study with a diagnosis of IPF or UCTD. The primary outcome compared the presence or absence of a ≥5% increase in percent predicted forced vital capacity (FVC) in IPF and UCTD. Regression models were used to account for potential confounding variables. Ninety subjects were identified; 59 subjects (30 IPF, 29 UCTD) had longitudinal pulmonary function data for inclusion in the analysis. After accounting for baseline pulmonary function tests, treatment, and duration between studies, UCTD was associated with substantial improvement in FVC (odds ratio = 8.23, 95% confidence interval, 1.27–53.2; p = 0.03) during follow-up (median, 8 months) compared with IPF. Patients with UCTD-ILD are more likely to have improved pulmonary function during follow-up than those with IPF. These findings demonstrate the clinical importance of identifying UCTD in patients presenting with an “idiopathic” interstitial pneumonia

    Outcome of hospitalization for COVID-19 in patients with interstitial lung disease. An international multicenter study

    Get PDF
    Rationale: The impact of coronavirus disease (COVID-19) on patients with interstitial lung disease (ILD) has not been established. Objectives: To assess outcomes in patients with ILD hospitalized for COVID-19 versus those without ILD in a contemporaneous age-, sex-, and comorbidity-matched population. Methods: An international multicenter audit of patients with a prior diagnosis of ILD admitted to the hospital with COVID-19 between March 1 and May 1, 2020, was undertaken and compared with patients without ILD, obtained from the ISARIC4C (International Severe Acute Respiratory and Emerging Infection Consortium Coronavirus Clinical Characterisation Consortium) cohort, admitted with COVID-19 over the same period. The primary outcome was survival. Secondary analysis distinguished idiopathic pulmonary fibrosis from non–idiopathic pulmonary fibrosis ILD and used lung function to determine the greatest risks of death. Measurements and Main Results: Data from 349 patients with ILD across Europe were included, of whom 161 were admitted to the hospital with laboratory or clinical evidence of COVID-19 and eligible for propensity score matching. Overall mortality was 49% (79/161) in patients with ILD with COVID-19. After matching, patients with ILD with COVID-19 had significantly poorer survival (hazard ratio [HR], 1.60; confidence interval, 1.17–2.18; P = 0.003) than age-, sex-, and comorbidity-matched controls without ILD. Patients with an FVC of <80% had an increased risk of death versus patients with FVC ≥80% (HR, 1.72; 1.05–2.83). Furthermore, obese patients with ILD had an elevated risk of death (HR, 2.27; 1.39−3.71). Conclusions: Patients with ILD are at increased risk of death from COVID-19, particularly those with poor lung function and obesity. Stringent precautions should be taken to avoid COVID-19 in patients with ILD

    Outcome of hospitalization for Covid-19 in patients with interstitial lung disease. An international multicenter study

    No full text
    Rationale: The impact of coronavirus disease (COVID-19) on patients with interstitial lung disease (ILD) has not been established. Objectives: To assess outcomes in patients with ILD hospitalized for COVID-19 versus those without ILD in a contemporaneous age-, sex-, and comorbidity-matched population. Methods: An international multicenter audit of patients with a prior diagnosis of ILD admitted to the hospital with COVID-19 between March 1 and May 1, 2020, was undertaken and compared with patients without ILD, obtained from the ISARIC4C (International Severe Acute Respiratory and Emerging Infection Consortium Coronavirus Clinical Characterisation Consortium) cohort, admitted with COVID-19 over the same period. The primary outcome was survival. Secondary analysis distinguished idiopathic pulmonary fibrosis from non–idiopathic pulmonary fibrosis ILD and used lung function to determine the greatest risks of death. Measurements and Main Results: Data from 349 patients with ILD across Europe were included, of whom 161 were admitted to the hospital with laboratory or clinical evidence of COVID-19 and eligible for propensity score matching. Overall mortality was 49% (79/161) in patients with ILD with COVID-19. After matching, patients with ILD with COVID-19 had significantly poorer survival (hazard ratio [HR], 1.60; confidence interval, 1.17–2.18; P = 0.003) than age-, sex-, and comorbidity-matched controls without ILD. Patients with an FVC of Conclusions: Patients with ILD are at increased risk of death from COVID-19, particularly those with poor lung function and obesity. Stringent precautions should be taken to avoid COVID-19 in patients with ILD.</p

    Short term pulmonary function trends are predictive of mortality in interstitial lung disease associated with systemic sclerosis.

    Get PDF
    OBJECTIVE: To determine the prognostic value of pulmonary function test (PFT) trends at one and two years in interstitial lung disease associated with systemic sclerosis (SSc-ILD). METHODS: The prognostic significance of PFT trends at one year (n=162), and two years (n=140) was examined against 15 year survival. PFT trends, expressed as continuous and categorical change in separate analyses, were examined against mortality in univariate and multivariate models. SSc-ILD was defined at presentation as limited lung fibrosis or extensive lung fibrosis using the UKRSA staging system. RESULTS: One year PFT trends were predictive of mortality only in patients with extensive lung fibrosis: categorical FVC change, alone or in combination with categorical change in DLco, had greater prognostic significance than continuous FVC change or trends in other PFT variables. Taking into account both prognostic value and sensitivity to change, the optimal definition of progression for trial purposes was an FVC and DLco composite, consisting of either an FVC decline from baseline ≥10% or an FVC decline of 5-9% in association with a DLco decline of ≥15%. At two years, gas transfer trends had the greatest prognostic significance, in the whole cohort and in limited lung fibrosis. However, in extensive lung fibrosis, the composite end-point defined above was the strongest prognostic determinant. Larger changes were required in the FVC/DLco ratio than in Kco to achieve prognostic significance. CONCLUSION: Our findings provide support for routine spirometric and gas transfer monitoring in SSc-ILD, based on linkages to long-term outcome, with further evaluation of a composite FVC and DLco end-point warranted for trial purposes. This article is protected by copyright. All rights reserved

    Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen.

    No full text
    OBJECTIVE: Connective tissue growth factor (CTGF; CCN2) is overexpressed in systemic sclerosis (SSc) and has been hypothesized to be a key mediator of the pulmonary fibrosis frequently observed in this disease. CTGF is induced by transforming growth factor beta (TGFbeta) and is a mediator of some profibrotic effects of TGFbeta in vitro. This study was undertaken to investigate the role of CTGF in enhanced expression of type I collagen in bleomycin-induced lung fibrosis, and to delineate the mechanisms of action underlying the effects of CTGF on Col1a2 (collagen gene type I alpha2) in this mouse model and in human pulmonary fibroblasts. METHODS: Transgenic mice that were carrying luciferase and beta-galactosidase reporter genes driven by the Col1a2 enhancer/promoter and the CTGF promoter, respectively, were injected with bleomycin to induce lung fibrosis (or saline as control), and the extracted pulmonary fibroblasts were incubated with CTGF blocking agents. In vitro, transient transfection, promoter/reporter constructs, and electrophoretic mobility shift assays were used to determine the mechanisms of action of CTGF in pulmonary fibroblasts. RESULTS: In the mouse lung tissue, CTGF expression and promoter activity peaked 1 week after bleomycin challenge, whereas type I collagen expression and Col1a2 promoter activity peaked 2 weeks postchallenge. Fibroblasts isolated from the mouse lungs 14 days after bleomycin treatment retained a profibrotic expression pattern, characterized by greatly elevated levels of type I collagen and CTGF protein and increased promoter activity. In vitro, inhibition of CTGF by specific small interfering RNA and neutralizing antibodies reduced the collagen protein expression and Col1a2 promoter activity. Moreover, in vivo, anti-CTGF antibodies applied after bleomycin challenge significantly reduced the Col1a2 promoter activity by approximately 25%. The enhanced Col1a2 promoter activity in fibroblasts from bleomycin-treated lungs was partly dependent on Smad signaling, whereas CTGF acted on the Col1a2 promoter by a mechanism that was independent of the Smad binding site, but was, instead, dependent on the ERK-1/2 and JNK MAPK pathways. The CTGF effect was mapped to the proximal promoter region surrounding the inverted CCAAT box, possibly involving CREB and c-Jun. In human lung fibroblasts, the human COL1A2 promoter responded in a similar manner, and the mechanisms of action also involved ERK-1/2 and JNK signaling. CONCLUSION: Our results clearly define a direct profibrotic effect of CTGF and demonstrate its contribution to lung fibrosis through transcriptional activation of Col1a2. Blocking strategies revealed the signaling mechanisms involved. These findings show CTGF to be a rational target for therapy in fibrotic diseases such as SSc
    corecore