239 research outputs found
Exploring human-guided strategies for reaction network exploration: Interactive molecular dynamics in virtual reality as a tool for citizen scientists
The emerging fields of citizen science and gamification reformulate scientific problems as games or puzzles to be solved. Through engaging the wider non-scientific community, significant breakthroughs may be made by analyzing citizen-gathered data. In parallel, recent advances in virtual reality (VR) technology are increasingly being used within a scientific context and the burgeoning field of interactive molecular dynamics in VR (iMD-VR) allows users to interact with dynamical chemistry simulations in real time. Here, we demonstrate the utility of iMD-VR as a medium for gamification of chemistry research tasks. An iMD-VR "game"was designed to encourage users to explore the reactivity of a particular chemical system, and a cohort of 18 participants was recruited to playtest this game as part of a user study. The reaction game encouraged users to experiment with making chemical reactions between a propyne molecule and an OH radical, and "molecular snapshots"from each game session were then compiled and used to map out reaction pathways. The reaction network generated by users was compared to existing literature networks demonstrating that users in VR capture almost all the important reaction pathways. Further comparisons between humans and an algorithmic method for guiding molecular dynamics show that through using citizen science to explore these kinds of chemical problems, new approaches and strategies start to emerge
A New Approach for Adipose Tissue Treatment and Body Contouring Using Radiofrequency-Assisted Liposuction
A new liposuction technology for adipocyte lipolysis and uniform three-dimensional tissue heating and contraction is presented. The technology is based on bipolar radiofrequency energy applied to the subcutaneous adipose tissue and subdermal skin surface. Preliminary clinical results, thermal monitoring, and histologic biopsies of the treated tissue demonstrate rapid preaspiration liquefaction of adipose tissue, coagulation of subcutaneous blood vessels, and uniform sustained heating of tissue
Recommended from our members
Contribution of respiratory tract infections to child deaths: a data linkage study
Background: Respiratory tract infections (RTIs) are an important cause of death in children, and often contribute to the terminal decline in children with chronic conditions. RTIs are often underrecorded as the underlying cause of death; therefore the overall contribution of RTIs to child deaths and the potential preventability of RTI-related deaths have not been adequately quantified.
Methods: We analysed deaths in children resident in England who died of non-injury causes aged 28 days to 18 years between 2001 and 2010 using death certificates linked to a longitudinal hospital admission database. We defined deaths as RTI-related if RTIs or other respiratory conditions were recorded on death certificates or linked hospital records up to 30 days before death. We examined trends in mortality by age group, year and season (winter or summer) and determined the winter excess of RTI-related deaths using rate differencing techniques. We estimated the proportion of RTI-related deaths in children with chronic conditions.
Results: 22.4% (5039/22509) of child deaths were RTI-related. RTI-related deaths declined by 2.3% per year in infants aged 28 to 364 days between 2001 and 2010. No decline was observed for older children. On average there were 161 winter excess RTI-related deaths annually, accounting for 32% of all RTI-related deaths. 89.0% of children with RTI-related deaths had at least one chronic condition; neurological conditions were the most prevalent.
Conclusions: RTI-related deaths have not declined in the last decade except in infants. Targeted strategies to prevent the winter excess of RTIs and to treat RTIs in children, particularly children with chronic conditions, may reduce RTI-related deaths
Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH Mutations in Glioblastoma
Isocitrate dehydrogenases (IDHs) catalyse oxidative decarboxylation of isocitrate to Ξ±-ketoglutarate (Ξ±-KG). IDH1 functions in the cytosol and peroxisomes, whereas IDH2 and IDH3 are both localized in the mitochondria. Heterozygous somatic mutations in IDH1 occur at codon 132 in 70% of grade IIβIII gliomas and secondary glioblastomas (GBMs), and in 5% of primary GBMs. Mutations in IDH2 at codon 172 are present in grade IIβIII gliomas at a low frequency. IDH1 and IDH2 mutations cause both loss of normal enzyme function and gain-of-function, causing reduction of Ξ±-KG to D-2-hydroxyglutarate (D-2HG) which accumulates. Excess hydroxyglutarate (2HG) can also be caused by germline mutations in D- and L-2-hydroxyglutarate dehydrogenases (D2HGDH and L2HGDH). If loss of IDH function is critical for tumourigenesis, we might expect some tumours to acquire somatic IDH3 mutations. Alternatively, if 2HG accumulation is critical, some tumours might acquire somatic D2HGDH or L2HGDH mutations. We therefore screened 47 glioblastoma samples looking for changes in these genes. Although IDH1 R132H was identified in 12% of samples, no mutations were identified in any of the other genes. This suggests that mutations in IDH3, D2HGDH and L2HGDH do not occur at an appreciable frequency in GBM. One explanation is simply that mono-allelic IDH1 and IDH2 mutations occur more frequently by chance than the bi-allelic mutations expected at IDH3, D2HGDH and L2HGDH. Alternatively, both loss of IDH function and 2HG accumulation might be required for tumourigenesis, and only IDH1 and IDH2 mutations have these dual effects
Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies
<p>Abstract</p> <p>Background</p> <p>Two distinctly different types of measurement error are Berkson and classical. Impacts of measurement error in epidemiologic studies of ambient air pollution are expected to depend on error type. We characterize measurement error due to instrument imprecision and spatial variability as multiplicative (i.e. additive on the log scale) and model it over a range of error types to assess impacts on risk ratio estimates both on a per measurement unit basis and on a per interquartile range (IQR) basis in a time-series study in Atlanta.</p> <p>Methods</p> <p>Daily measures of twelve ambient air pollutants were analyzed: NO<sub>2</sub>, NO<sub>x</sub>, O<sub>3</sub>, SO<sub>2</sub>, CO, PM<sub>10 </sub>mass, PM<sub>2.5 </sub>mass, and PM<sub>2.5 </sub>components sulfate, nitrate, ammonium, elemental carbon and organic carbon. Semivariogram analysis was applied to assess spatial variability. Error due to this spatial variability was added to a reference pollutant time-series on the log scale using Monte Carlo simulations. Each of these time-series was exponentiated and introduced to a Poisson generalized linear model of cardiovascular disease emergency department visits.</p> <p>Results</p> <p>Measurement error resulted in reduced statistical significance for the risk ratio estimates for all amounts (corresponding to different pollutants) and types of error. When modelled as classical-type error, risk ratios were attenuated, particularly for primary air pollutants, with average attenuation in risk ratios on a per unit of measurement basis ranging from 18% to 92% and on an IQR basis ranging from 18% to 86%. When modelled as Berkson-type error, risk ratios per unit of measurement were biased away from the null hypothesis by 2% to 31%, whereas risk ratios per IQR were attenuated (i.e. biased toward the null) by 5% to 34%. For CO modelled error amount, a range of error types were simulated and effects on risk ratio bias and significance were observed.</p> <p>Conclusions</p> <p>For multiplicative error, both the amount and type of measurement error impact health effect estimates in air pollution epidemiology. By modelling instrument imprecision and spatial variability as different error types, we estimate direction and magnitude of the effects of error over a range of error types.</p
Gene Expression Changes Associated with the Airway Wall Response to Injury
Understanding the way in which the airway heals in response to injury is fundamental to dissecting the mechanisms underlying airway disease pathology. As only limited data is available in relation to the in vivo characterisation of the molecular features of repair in the airway we sought to characterise the dynamic changes in gene expression that are associated with the early response to physical injury in the airway wall.We profiled gene expression changes in the airway wall using a large animal model of physical injury comprising bronchial brush biopsy in anaesthetised sheep. The experimental design featured sequential studies in the same animals over the course of a week and yielded data relating to the response at 6 hours, and 1, 3 and 7 days after injury. Notable features of the transcriptional response included the early and sustained preponderance of down-regulated genes associated with angiogenesis and immune cell activation, selection and differentiation. Later features of the response included the up-regulation of cell cycle genes at d1 and d3, and the latter pronounced up-regulation of extracellular matrix-related genes at d3 and d7.It is possible to follow the airway wall response to physical injury in the same animal over the course of time. Transcriptional changes featured coordinate expression of functionally related genes in a reproducible manner both within and between animals. This characterisation will provide a foundation against which to assess the perturbations that accompany airway disease pathologies of comparative relevance
High Burden of Impetigo and Scabies in a Tropical Country
Scabies and impetigo are often thought of as nuisance diseases, but have the potential to cause a great deal of morbidity and even mortality if infection becomes complicated. Accurate assessments of these diseases are lacking, particularly in tropical developing countries. We performed a series of studies in infants and primary school children in Fiji, a tropical developing country in the South Pacific. Impetigo was very common: more than a quarter of school-aged children and 12% of infants had active impetigo. Scabies was also very common affecting 18% of school children and 14% of infants. The group A streptococcus was the most common infective organism followed by Staphylococcus aureus. The size of the problem has been underestimated, particularly in the Pacific. It is time for more concerted public health efforts in controlling impetigo and scabies
ROCK Inhibitor Y-27632 Suppresses Dissociation-Induced Apoptosis of Murine Prostate Stem/Progenitor Cells and Increases Their Cloning Efficiency
Activation of the RhoA/ROCK signaling pathway has been shown to contribute to dissociation-induced apoptosis of embryonic and neural stem cells. We previously demonstrated that approximately 1 out of 40 LinβSca-1+CD49fhigh (LSC) prostate basal epithelial cells possess the capacities of stem cells for self-renewal and multi-lineage differentiation. We show here that treating LSC cells with the ROCK kinase inhibitor Y-27632 increases their cloning efficiency by 8 fold in an in vitro prostate colony assay. Y-27632 treatment allows prostate colony cells to replate efficiently, which does not occur otherwise. Y-27632 also increases the cloning efficiency of prostate stem cells in a prostate sphere assay and a dissociated prostate cell regeneration assay. The increased cloning efficiency is due to the suppression of the dissociation-induced, RhoA/ROCK activation-mediated apoptosis of prostate stem cells. Dissociation of prostate epithelial cells from extracellular matrix increases PTEN activity and attenuates AKT activity. Y-27632 treatment alone is sufficient to suppress cell dissociation-induced activation of PTEN activity. However, this does not contribute to the increased cloning efficiency, because Y-27632 treatment increases the sphere-forming unit of wild type and Pten null prostate cells to a similar extent. Finally, knocking down expression of both ROCK kinases slightly increases the replating efficiency of prostate colony cells, corroborating that they play a major role in the Y-27632 mediated increase in cloning efficiency. Our study implies that the numbers of prostate cells with stem/progenitor activity may be underestimated based on currently employed assays, supports that dissociation-induced apoptosis is a common feature of embryonic and somatic stem cells with an epithelial phenotype, and highlights the significance of environmental cues for the maintenance of stem cells
Loss of p53 in quaking viable mice leads to Purkinje cell defects and reduced survival
The qkv mutation is a one megabase deletion resulting in
abnormal expression of the qkI gene. qkv mice exhibit
hypomyelination of the central nervous system and display rapid tremors and seizures
as adults. The qkI locus on 6q26-27 has also been implicated as a candidate
tumor suppressor gene as the qkI locus maps to a region of genetic
instability in Glioblastoma Multiforme (GBM), an aggressive brain tumor of
astrocytic lineage. As GBM frequently harbors mutations affecting p53, we
crossbred qkv and p53 mutant mice to examine whether
qkv mice on a p53β/β
background have an increased incidence of GBM.
qkv/v;
p53β/β mice had a reduced survival rate
compared to p53β/β littermates, and the cause of
death of the majority of the mice remains unknown. In addition, immunohistochemistry
revealed Purkinje cell degeneration in the cerebellum. These results suggest that
p53 and qkI are genetically linked for neuronal maintenance and
survival
- β¦