219 research outputs found
The origin of large molecules in primordial autocatalytic reaction networks
Large molecules such as proteins and nucleic acids are crucial for life, yet
their primordial origin remains a major puzzle. The production of large
molecules, as we know it today, requires good catalysts, and the only good
catalysts we know that can accomplish this task consist of large molecules.
Thus the origin of large molecules is a chicken and egg problem in chemistry.
Here we present a mechanism, based on autocatalytic sets (ACSs), that is a
possible solution to this problem. We discuss a mathematical model describing
the population dynamics of molecules in a stylized but prebiotically plausible
chemistry. Large molecules can be produced in this chemistry by the coalescing
of smaller ones, with the smallest molecules, the `food set', being buffered.
Some of the reactions can be catalyzed by molecules within the chemistry with
varying catalytic strengths. Normally the concentrations of large molecules in
such a scenario are very small, diminishing exponentially with their size.
ACSs, if present in the catalytic network, can focus the resources of the
system into a sparse set of molecules. ACSs can produce a bistability in the
population dynamics and, in particular, steady states wherein the ACS molecules
dominate the population. However to reach these steady states from initial
conditions that contain only the food set typically requires very large
catalytic strengths, growing exponentially with the size of the catalyst
molecule. We present a solution to this problem by studying `nested ACSs', a
structure in which a small ACS is connected to a larger one and reinforces it.
We show that when the network contains a cascade of nested ACSs with the
catalytic strengths of molecules increasing gradually with their size (e.g., as
a power law), a sparse subset of molecules including some very large molecules
can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio
Boolean Dynamics with Random Couplings
This paper reviews a class of generic dissipative dynamical systems called
N-K models. In these models, the dynamics of N elements, defined as Boolean
variables, develop step by step, clocked by a discrete time variable. Each of
the N Boolean elements at a given time is given a value which depends upon K
elements in the previous time step.
We review the work of many authors on the behavior of the models, looking
particularly at the structure and lengths of their cycles, the sizes of their
basins of attraction, and the flow of information through the systems. In the
limit of infinite N, there is a phase transition between a chaotic and an
ordered phase, with a critical phase in between.
We argue that the behavior of this system depends significantly on the
topology of the network connections. If the elements are placed upon a lattice
with dimension d, the system shows correlations related to the standard
percolation or directed percolation phase transition on such a lattice. On the
other hand, a very different behavior is seen in the Kauffman net in which all
spins are equally likely to be coupled to a given spin. In this situation,
coupling loops are mostly suppressed, and the behavior of the system is much
more like that of a mean field theory.
We also describe possible applications of the models to, for example, genetic
networks, cell differentiation, evolution, democracy in social systems and
neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical
Sciences Serie
Using Multiple Microenvironments to Find Similar Ligand-Binding Sites: Application to Kinase Inhibitor Binding
The recognition of cryptic small-molecular binding sites in protein structures is important for understanding off-target side effects and for recognizing potential new indications for existing drugs. Current methods focus on the geometry and detailed chemical interactions within putative binding pockets, but may not recognize distant similarities where dynamics or modified interactions allow one ligand to bind apparently divergent binding pockets. In this paper, we introduce an algorithm that seeks similar microenvironments within two binding sites, and assesses overall binding site similarity by the presence of multiple shared microenvironments. The method has relatively weak geometric requirements (to allow for conformational change or dynamics in both the ligand and the pocket) and uses multiple biophysical and biochemical measures to characterize the microenvironments (to allow for diverse modes of ligand binding). We term the algorithm PocketFEATURE, since it focuses on pockets using the FEATURE system for characterizing microenvironments. We validate PocketFEATURE first by showing that it can better discriminate sites that bind similar ligands from those that do not, and by showing that we can recognize FAD-binding sites on a proteome scale with Area Under the Curve (AUC) of 92%. We then apply PocketFEATURE to evolutionarily distant kinases, for which the method recognizes several proven distant relationships, and predicts unexpected shared ligand binding. Using experimental data from ChEMBL and Ambit, we show that at high significance level, 40 kinase pairs are predicted to share ligands. Some of these pairs offer new opportunities for inhibiting two proteins in a single pathway
Music Attenuates Excessive Visual Guidance of Skilled Reaching in Advanced but Not Mild Parkinson's Disease
Parkinson's disease (PD) results in movement and sensory impairments that can be reduced by familiar music. At present, it is unclear whether the beneficial effects of music are limited to lessening the bradykinesia of whole body movement or whether beneficial effects also extend to skilled movements of PD subjects. This question was addressed in the present study in which control and PD subjects were given a skilled reaching task that was performed with and without accompanying preferred musical pieces. Eye movements and limb use were monitored with biomechanical measures and limb movements were additionally assessed using a previously described movement element scoring system. Preferred musical pieces did not lessen limb and hand movement impairments as assessed with either the biomechanical measures or movement element scoring. Nevertheless, the PD patients with more severe motor symptoms as assessed by Hoehn and Yahr (HY) scores displayed enhanced visual engagement of the target and this impairment was reduced during trials performed in association with accompanying preferred musical pieces. The results are discussed in relation to the idea that preferred musical pieces, although not generally beneficial in lessening skilled reaching impairments, may normalize the balance between visual and proprioceptive guidance of skilled reaching
Recommended from our members
An Ultra Deep Field survey with WFIRST
Studying the formation and evolution of galaxies at the earliest cosmic
times, and their role in reionization, requires the deepest imaging possible.
Ultra-deep surveys like the HUDF and HFF have pushed to mag \mAB30,
revealing galaxies at the faint end of the LF to 911 and
constraining their role in reionization. However, a key limitation of these
fields is their size, only a few arcminutes (less than a Mpc at these
redshifts), too small to probe large-scale environments or clustering
properties of these galaxies, crucial for advancing our understanding of
reionization. Achieving HUDF-quality depth over areas 100 times larger
becomes possible with a mission like the Wide Field Infrared Survey Telescope
(WFIRST), a 2.4-m telescope with similar optical properties to HST, with a
field of view of 1000 arcmin, 100 the area of the
HST/ACS HUDF.
This whitepaper motivates an Ultra-Deep Field survey with WFIRST, covering
100300 the area of the HUDF, or up to 1 deg, to
\mAB30, potentially revealing thousands of galaxies and AGN at the
faint end of the LF, at or beyond \,\,910 in the epoch of
reionization, and tracing their LSS environments, dramatically increasing the
discovery potential at these redshifts.
(Note: This paper is a somewhat expanded version of one that was submitted as
input to the Astro2020 Decadal Survey, with this version including an Appendix
(which exceeded the Astro2020 page limits), describing how the science drivers
for a WFIRST Ultra Deep Field might map into a notional observing program,
including the filters used and exposure times needed to achieve these depths.
Pharmacological profile of a potent, efficacious fentanyl derivative in rhesus monkeys
The recent synthesis of fentanyl derivatives, some of which appear to have novel profiles of pharmacological effects, has provided compelling evidence that μ opioid efficacy might be altered systematically by modifications in the parent compound fentanyl. In the present study a new 4-(heteroanilido)-piperidine, compound 28, was studied for its effects in rhesus monkeys. In self-administration studies compound 28 maintained rates of lever pressing similar to those maintained by alfentanil; the reinforcing effects of compound 28 were attenuated by the opioid antagonist quadazocine. In drug discrimination studies compound 28 did not substitute for the κ agonist ethylketocyclazocine and did substitute for the μ agonist alfentanil. In morphine-treated subjects discriminating between saline and naltrexone, compound 28 did not substitute for naltrexone; however, in morphine-abstinent subjects compound 28 reversed naltrexone lever responding. Moreover, this discriminative stimulus effect in morphine-abstinent subjects was antagonized by naltrexone and by quadazocine in a manner consistent with μ receptor mediation. Compound 28 also was an effective analgesic in a warm-water, tail-withdrawal procedure and it decreased markedly respiratory function. The analgesic effects as well as the respiratory depressant effects of compound 28 were antagonized by quadazocine. Together, these results show compound 28 to be a potent, efficacious μ agonist of similar potency to alfentanil. Large differences in apparent efficacy at μ receptors between compound 28 and another compound in this series (mirfentanil), clearly demonstrate that, within this chemical family, small chemical changes can confer significant differences in pharmacologic effect.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46340/1/213_2005_Article_BF02245876.pd
Interspecific Hybridization and Mitochondrial Introgression in Invasive Carcinus Shore Crabs
Interspecific hybridization plays an important role in facilitating adaptive
evolutionary change. More specifically, recent studies have demonstrated that
hybridization may dramatically influence the establishment, spread, and impact
of invasive populations. In Japan, previous genetic evidence for the presence of
two non-native congeners, the European green crab Carcinus
maenas and the Mediterranean green crab C.
aestuarii, has raised questions regarding the possibility of
hybridization between these sister species. Here I present analysis based on
both nuclear microsatellites and the mitochondrial cytochrome C oxidase subunit
I (COI) gene which unambiguously argues for a hybrid origin of Japanese
Carcinus. Despite the presence of mitochondrial lineages
derived from both C. maenas and C. aestuarii,
the Japanese population is panmictic at nuclear loci and has achieved
cytonuclear equilibrium throughout the sampled range in Japan. Furthermore,
analysis of admixture at nuclear loci indicates dramatic introgression of the
C. maenas mitochondrial genome into a predominantly
C. aestuarii nuclear background. These patterns, along with
inferences drawn from the observational record, argue for a hybridization event
pre-dating the arrival of Carcinus in Japan. The clarification
of both invasion history and evolutionary history afforded by genetic analysis
provides information that may be critically important to future studies aimed at
assessing risks posed by invasive Carcinus populations to Japan
and the surrounding region
- …