12,441 research outputs found

    Speed of light on rotating platforms

    Get PDF
    It is often taken for granted that on board a rotating disk it is possible to operate a \QTR{it}{global}3+1 splitting of space-time, such that both lengths and time intervals are \QTR{it}{uniquely} defined in terms of measurements performed by real rods and real clocks at rest on the platform. This paper shows that this assumption, although widespread and apparently trivial, leads to an anisotropy of the velocity of two light beams travelling in opposite directions along the rim of the disk; which in turn implies some recently pointed out paradoxical consequences undermining the self-consistency of the Special Theory of Relativity (SRT). A correct application of the SRT solves the problem and recovers complete internal consistency for the theory. As an immediate consequence, it is shown that the Sagnac effect only depends on the non homogeneity of time on the platform and has nothing to do with any anisotropy of the speed of light along the rim of the disk, contrary to an incorrect but widely supported idea.Comment: Latex, 2 figure

    Density Matrix Renormalization Group for Dummies

    Get PDF
    We describe the Density Matrix Renormalization Group algorithms for time dependent and time independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for anyone willing to enter in the field or write the program source code from scratch.Comment: 29 pages, 9 figures. Published version. An open source version of the code can be found at http://qti.sns.it/dmrg/phome.htm

    A continuous population of variable stars up to about 1.5 mag above the horizontal branch?

    Full text link
    Increasing samples of pulsating variable stars populating the classical instability strip from the horizontal branch to a few magnitudes brighter are being found in several Local Group galaxies, irrespective of the galaxy morphological type. We will review the observational scenario focusing in particular on the Anomalous Cepheids and related objects.Comment: 5 pages, 2 figures, invited review in JENAM 2003, "Minisymposium: Asteroseismology and Stellar Evolution", Communications in Asteroseismology, in pres

    Quantum Interference Effects in Spacetime of Slowly Rotating Compact Objects in Braneworld

    Full text link
    The phase shift a neutron interferometer caused by the gravitational field and the rotation of the earth is derived in a unified way from the standpoint of general relativity. General relativistic quantum interference effects in the slowly rotating braneworld as the Sagnac effect and phase shift effect of interfering particle in neutron interferometer are considered. It was found that in the case of the Sagnac effect the influence of brane parameter is becoming important due to the fact that the angular velocity of the locally non rotating observer must be larger than one in the Kerr space-time. In the case of neutron interferometry it is found that due to the presence of the parameter Q∗Q^{*} an additional term in the phase shift of interfering particle emerges from the results of the recent experiments we have obtained upper limit for the tidal charge as Q∗≲107cm2Q^{*}\lesssim 10^{7} \rm{cm}^{2}. Finally, as an example, we apply the obtained results to the calculation of the (ultra-cold neutrons) energy level modification in the braneworld.Comment: 12 pages, 2 figure

    Kinetics of first-order phase transitions from microcanonical thermostatistics

    Full text link
    More than a century has passed since van't Hoff and Arrhenius formulated their celebrated rate theories, but there are still elusive aspects in the temperature-dependent phase transition kinetics of molecular systems. Here I present a theory based on microcanonical thermostatistics that establishes a simple and direct temperature dependence for all rate constants, including the forward and the reverse rate constants, the equilibrium constant, and the nucleation rate. By considering a generic model that mimic the microcanonical temperature of molecular systems in a region close to a first-order phase transition, I obtain shape-free relations between kinetics and thermodynamics physical quantities which are validated through stochastic simulations. Additionally, the rate theory is applied to results obtained from protein folding and ice nucleation experiments, demonstrating that the expressions derived here can be used to describe the experimental data of a wide range of molecular systems.Comment: 22 pages, 5 figure
    • …
    corecore