440 research outputs found

    Rapidly Rotating Bose-Einstein Condensates in Homogeneous Traps

    Full text link
    We extend the results of a previous paper on the Gross-Pitaevskii description of rotating Bose-Einstein condensates in two-dimensional traps to confining potentials of the form V(r) = r^s, 2<s<2<s <\infty. Writing the coupling constant as 1/ϵ21/\epsilon^2 we study the limit ϵ0\epsilon \to 0. We derive rigorously the leading asymptotics of the ground state energy and the density profile when the rotation velocity \Omega tends to infinity as a power of 1/ϵ1/\epsilon. The case of asymptotically homogeneous potentials is also discussed.Comment: LaTex2e, 16 page

    Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps

    Full text link
    We study a rotating Bose-Einstein Condensate in a strongly anharmonic trap (flat trap with a finite radius) in the framework of 2D Gross-Pitaevskii theory. We write the coupling constant for the interactions between the gas atoms as 1/ϵ21/\epsilon^2 and we are interested in the limit ϵ0\epsilon\to 0 (TF limit) with the angular velocity Ω\Omega depending on ϵ\epsilon. We derive rigorously the leading asymptotics of the ground state energy and the density profile when Ω\Omega tends to infinity as a power of 1/ϵ1/\epsilon. If Ω(ϵ)=Ω0/ϵ\Omega(\epsilon)=\Omega_0/\epsilon a ``hole'' (i.e., a region where the density becomes exponentially small as 1/ϵ1/\epsilon\to\infty) develops for Ω0\Omega_0 above a certain critical value. If Ω(ϵ)1/ϵ\Omega(\epsilon)\gg 1/\epsilon the hole essentially exhausts the container and a ``giant vortex'' develops with the density concentrated in a thin layer at the boundary. While we do not analyse the detailed vortex structure we prove that rotational symmetry is broken in the ground state for const.logϵ<Ω(ϵ)const./ϵ{\rm const.}|\log\epsilon|<\Omega(\epsilon)\lesssim \mathrm{const.}/\epsilon.Comment: LaTex2e, 28 pages, revised version to be published in Journal of Mathematical Physic

    Importance of an Astrophysical Perspective for Textbook Relativity

    Get PDF
    The importance of a teaching a clear definition of the ``observer'' in special relativity is highlighted using a simple astrophysical example from the exciting current research area of ``Gamma-Ray Burst'' astrophysics. The example shows that a source moving relativistically toward a single observer at rest exhibits a time ``contraction'' rather than a ``dilation'' because the light travel time between the source and observer decreases with time. Astrophysical applications of special relativity complement idealized examples with real applications and very effectively exemplify the role of a finite light travel time.Comment: 5 pages TeX, European Journal of Physics, in pres

    A New Independent Limit on the Cosmological Constant/Dark Energy from the Relativistic Bending of Light by Galaxies and Clusters of Galaxies

    Full text link
    We derive new limits on the value of the cosmological constant, Λ\Lambda, based on the Einstein bending of light by systems where the lens is a distant galaxy or a cluster of galaxies. We use an amended lens equation in which the contribution of Λ\Lambda to the Einstein deflection angle is taken into account and use observations of Einstein radii around several lens systems. We use in our calculations a Schwarzschild-de Sitter vacuole exactly matched into a Friedmann-Robertson-Walker background and show that a Λ\Lambda-contribution term appears in the deflection angle within the lens equation. We find that the contribution of the Λ\Lambda-term to the bending angle is larger than the second-order term for many lens systems. Using these observations of bending angles, we derive new limits on the value of Λ\Lambda. These limits constitute the best observational upper bound on Λ\Lambda after cosmological constraints and are only two orders of magnitude away from the value determined by those cosmological constraints.Comment: 5 pages, 1 figure, matches version published in MNRA

    Multiple Photonic Shells Around a Line Singularity

    Full text link
    Line singularities including cosmic strings may be screened by photonic shells until they appear as a planar wall.Comment: 6 page

    More on Lensing by a Cosmological Constant

    Full text link
    The question of whether or not the cosmological constant affects the bending of light around a concentrated mass has been the subject of some recent papers. We present here a simple, specific and transparent example where Λ\Lambda bending clearly takes place, and where it is clearly neither a coordinate effect nor an aberration effect. We then show that in some recent works using perturbation theory the Λ\Lambda contribution was missed because of initial too-stringent smallness assumptions. Namely: Our method has been to insert a Kottler (Schwarzschild with Λ\Lambda) vacuole into a Friedmann universe, and to calculate the total bending within the vacuole. We assume that no more bending occurs outside. It is important to observe that while the mass contribution to the bending takes place mainly quite near the lens, the Λ\Lambda bending continues throughout the vacuole. Thus if one deliberately restricts one's search for Λ\Lambda bending to the immediate neighborhood of the lens, one will not find it. Lastly, we show that the Λ\Lambda bending also follows from standard Weyl focusing, and so again, it cannot be a coordinate effect.Comment: 5 pages, matches MNRAS accepted versio

    Considerations on the Unruh Effect: Causality and Regularization

    Full text link
    This article is motivated by the observation, that calculations of the Unruh effect based on idealized particle detectors are usually made in a way that involves integrations along the {\em entire} detector trajectory up to the infinitely remote {\em future}. We derive an expression which allows time-dependence of the detector response in the case of a non-stationary trajectory and conforms more explicitely to the principle of causality, namely that the response at a given instant of time depends only on the detectors {\em past} movements. On trying to reproduce the thermal Unruh spectrum we are led to an unphysical result, which we trace down to the use of the standard regularization t\to t-i\eps of the correlation function. By consistently employing a rigid detector of finite extension, we are led to a different regularization which works fine with our causal response function.Comment: 19 pages, 2 figures, v2: some minor change

    The Schwarzschild-de Sitter solution in five-dimensional general relativity briefly revisited

    Get PDF
    We briefly revisit the Schwarzschild-de Sitter solution in the context of five-dimensional general relativity. We obtain a class of five-dimensional solutions of Einstein vacuum field equations into which the four-dimensional Schwarzschild-de Sitter space can be locally and isometrically embedded. We show that this class of solutions is well-behaved in the limit of lambda approaching zero. Applying the same procedure to the de Sitter cosmological model in five dimensions we obtain a class of embedding spaces which are similarly well-behaved in this limit. These examples demonstrate that the presence of a non-zero cosmological constant does not in general impose a rigid relation between the (3+1) and (4+1)-dimensional spacetimes, with degenerate limiting behaviour.Comment: 7 page

    Scattering of scalar perturbations with cosmological constant in low-energy and high-energy regimes

    Full text link
    We study the absorption and scattering of massless scalar waves propagating in spherically symmetric spacetimes with dynamical cosmological constant both in low-energy and high-energy zones. In the former low-energy regime, we solve analytically the Regge-Wheeler wave equation and obtain an analytic absorption probability expression which varies with MΛM\sqrt{\Lambda}, where MM is the central mass and Λ\Lambda is cosmological constant. The low-energy absorption probability, which is in the range of [0,0.986701][0, 0.986701], increases monotonically with increase in Λ\Lambda. In the latter high-energy regime, the scalar particles adopt their geometric optics limit value. The trajectory equation with effective potential emerges and the analytic high-energy greybody factor, which is relevant with the area of classically accessible regime, also increases monotonically with increase in Λ\Lambda, as long Λ\Lambda is less than or of the order of 10410^4. In this high-energy case, the null cosmological constant result reduces to the Schwarzschild value 27πrg2/427\pi r_g^2/4.Comment: 12 pages, 6 figure
    corecore