1,376 research outputs found

    Paired and clustered quantum Hall states

    Full text link
    We briefly summarize properties of quantum Hall states with a pairing or clustering property. Their study employs a fundamental connection with parafermionic Conformal Field Theories. We report on closed form expressions for the many-body wave functions and on multiplicities of the fundamental quasi-hole excitations.Comment: 13 pages, Contribution to the proceedings of the NATO Advanced Research Workshop "Statistical Field Theories" Como (Italy), June 18-23 200

    Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity

    Full text link
    We use neutron scattering to study the structural and magnetic phase transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a semimetal to a high-transition-temperature (high-Tc) superconductor through Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a stripe like commensurate antiferromagnetic order with decreasing temperature. With increasing Fluorine doping, the structural phase transition decreases gradually while the antiferromagnetic order is suppressed before the appearance of superconductivity, resulting an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other Fe-based superconductors reveals that the effective electronic band width decreases systematically for materials with higher Tc. The results suggest that electron correlation effects are important for the mechanism of high-Tc superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure

    Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Despite the availability of pharmacologic treatments, chronic inflammatory pain remains inadequately treated. Understanding the nociceptive signaling pathways of such pain is therefore important in developing long-acting treatments with limited side effects. High local proton concentrations (tissue acidosis) causing direct excitation or modulation of nociceptive sensory neurons by proton-sensing receptors are responsible for pain in some inflammatory pain conditions. We previously found that all four proton-sensing G-protein-coupled receptors (GPCRs) are expressed in pain-relevant loci (dorsal root ganglia, DRG), which suggests their possible involvement in nociception, but their functions in pain remain unclear.</p> <p>Results</p> <p>In this study, we first demonstrated differential change in expression of proton-sensing GPCRs in peripheral inflammation induced by the inflammatory agents capsaicin, carrageenan, and complete Freund's adjuvant (CFA). In particular, the expression of TDAG8, one proton-sensing GPCR, was increased 24 hours after CFA injection because of increased number of DRG neurons expressing TDAG8. The number of DRG neurons expressing both TDAG8 and transient receptor potential vanilloid 1 (TRPV1) was increased as well. Further studies revealed that TDAG8 activation sensitized the TRPV1 response to capsaicin, suggesting that TDAG8 could be involved in CFA-induced chronic inflammatory pain through regulation of TRPV1 function.</p> <p>Conclusion</p> <p>Each subtype of the OGR1 family was expressed differently, which may reflect differences between models in duration and magnitude of hyperalgesia. Given that TDAG8 and TRPV1 expression increased after CFA-induced inflammation and that TDAG8 activation can lead to TRPV1 sensitization, it suggests that high concentrations of protons after inflammation may not only directly activate proton-sensing ion channels (such as TRPV1) to cause pain but also act on proton-sensing GPCRs to regulate the development of hyperalgesia.</p

    Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2

    Full text link
    Recent theories suggest that the excitations of certain quantum Hall states may have exotic braiding statistics which could be used to build topological quantum gates. This has prompted an experimental push to study such states using confined geometries where the statistics can be tested. We study the transport properties of quantum point contacts (QPCs) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits well-developed fractional quantum Hall effect, including at bulk filling fraction 5/2. We find that a plateau at effective QPC filling factor 5/2 is identifiable in point contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5 microns. We study the temperature and dc-current-bias dependence of the 5/2 plateau in the QPC, as well as neighboring fractional and integer plateaus in the QPC while keeping the bulk at filling factor 3. Transport near QPC filling factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms in this confined geometry

    Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature

    Get PDF
    We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR) using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature

    Long-term medical utilization following ventilator-associated pneumonia in acute stroke and traumatic brain injury patients: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The economic burden of ventilator-associated pneumonia (VAP) during the index hospitalization has been confirmed in previous studies. However, the long-term economic impact is still unclear. The aim of this study is to examine the effect of VAP on medical utilization in the long term.</p> <p>Methods</p> <p>This is a retrospective case-control study. Study subjects were patients experiencing their first traumatic brain injury, acute hemorrhagic stroke, or acute ischemic stroke during 2004. All subjects underwent endotracheal intubation in the emergency room (ER) on the day of admission or the day before admission, were transferred to the intensive care unit (ICU) and were mechanically ventilated for 48 hours or more. A total of 943 patients who developed VAP were included as the case group, and each was matched with two control patients without VAP by age ( ± 2 years), gender, diagnosis, date of admission ( ± 1 month) and hospital size, resulting in a total of 2,802 patients in the study. Using robust regression and Poisson regression models we examined the effect of VAP on medical utilization including hospitalization expenses, outpatient expenses, total medical expenses, number of ER visits, number of readmissions, number of hospitalization days and number of ICU days, during the index hospitalization and during the following 2-year period.</p> <p>Results</p> <p>Patients in the VAP group had higher hospitalization expenses, longer length of stay in hospital and in ICU, and a greater number of readmissions than the control group patients.</p> <p>Conclusions</p> <p>VAP has a significant impact on medical expenses and utilization, both during the index hospitalization during which VAP developed and in the longer term.</p

    The addition of a pH-sensitive gel improves microemulsion stability for the targeted removal of colonic ammonia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We prepared an oral W/O microemulsion for the removal of colonic ammonia (ME-RCA). The effect of this microemulsion was influenced by the digestion process in the gastrointestinal tract. In this paper, we aim to show that stability was improved by using a microemulsion-based gel for the removal of colonic ammonia (MBG-RCA).</p> <p>Methods</p> <p>MBG-RCA was prepared by adding sodium alginate to the ME-RCA. MBG-RCA and ME-RCA were passed through a simulated gastrointestinal environment, and the amount of colonic ammonia present was then determined by titration with a standard solution of hydrochloric acid. The pH of the gastrointestinal fluid was measured using a pH test paper and the size and form of the microemulsions were examined under the microscope. 18 healthy rats were randomly divided into three groups, fasted for 24 hours and allowed to drink normally. Three-way pipes were placed at the gastroduodenal junction in Group I, and at the terminal ileum in Group II. After the intragastric administration of ME-RCA, the stomach contents in Group I, the effluent from the terminal ileum in Group II and discharge from the anus in Group III were collected. The pH values of the gastrointestinal juice were measured by the pH test paper and those of the colon were determined by a universal indicator. These animal experiments were also used to test the effect of MBG-RCA.</p> <p>Results</p> <p>MBG-RCA showed a better removal rate of artificial colonic ammonia than ME-RCA (P < 0.05). The decrease in pH value of the artificial small intestinal fluid due to ME-RCA did not occur when MBG-RCA was used. In the simulated gastrointestinal process, MBG-RCA maintained greater stability and released the emulsion (ME-RCA) in the colonic fluid. In the gastrointestinal tract of normal SD rats, ME-RCA decreased in size and lost its stable form after entering the small intestine, while MBG-RCA remained stable and intact emulsion-drops were observed from the anus. Neither substance had any effect on the pH of the stomach or colon of normal rats (partly because normal rats were fasted for 24 hours and allowed to drink normally, which resulted in a low level of ammonia production in the colon). Unlike ME-RCA, MBG-RCA did not reduce the pH of the small intestine.</p> <p>Conclusions</p> <p>MBG-RCA was more stable in the gastrointestinal tract and more effective at removing colonic ammonia when a higher concentration of ammonia was present. This made it possible to achieve the targeted removal of colonic ammonia and is a promising method to prevent hepatic encephalopathy (HE) in future studies.</p

    Transient bilateral abducens neuropathy with post-tetanic facilitation and acute hypokalemia associated with oxaliplatin: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Oxaliplatin is a cytotoxic platinum compound that is in widespread use in the treatment of gastrointestinal cancers. It has been occasionally associated with acute motor neuropathy, but the precise mechanism is uncertain. To the best of our knowledge, we report the first case of a patient demonstrating post-tetanic facilitation in the setting of transient bilateral abducens neuropathy and hypokalemia, after being infused with oxaliplatin.</p> <p>Case presentation</p> <p>A 47-year-old Indian woman with metastatic gastric cancer was receiving an oxaliplatin infusion at the initiation of her third cycle of palliative chemotherapy. She developed acute bilateral abducens neuropathy with post-tetanic facilitation alongside acute laryngopharyngodysesthesia and hypokalemia. Following supportive management, including potassium infusion and warming, her neurological signs and symptoms were spontaneously resolved. This syndrome did not recur in subsequent cycles following prolongation of infusion duration and the addition of supportive calcium and magnesium infusions.</p> <p>Conclusion</p> <p>The novel clinical observation of post-tetanic facilitation highlights a possible involvement of voltage-gated channels at the presynaptic terminals in the mechanism of acute oxaliplatin neurotoxicity.</p
    corecore