144 research outputs found
De novo Biosynthesis of Biodiesel by Escherichia coli in Optimized Fed-Batch Cultivation
Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEEs), and is currently produced through the transesterification reaction of methanol (or ethanol) and triacylglycerols (TAGs). TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L−1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate
Hearing Feelings: Affective Categorization of Music and Speech in Alexithymia, an ERP Study
Background: Alexithymia, a condition characterized by deficits in interpreting and regulating feelings, is a risk factor for a variety of psychiatric conditions. Little is known about how alexithymia influences the processing of emotions in music and speech. Appreciation of such emotional qualities in auditory material is fundamental to human experience and has profound consequences for functioning in daily life. We investigated the neural signature of such emotional processing in alexithymia by means of event-related potentials. Methodology: Affective music and speech prosody were presented as targets following affectively congruent or incongruent visual word primes in two conditions. In two further conditions, affective music and speech prosody served as primes and visually presented words with affective connotations were presented as targets. Thirty-two participants (16 male) judged the affective valence of the targets. We tested the influence of alexithymia on cross-modal affective priming and on N400 amplitudes, indicative of individual sensitivity to an affective mismatch between words, prosody, and music. Our results indicate that the affective priming effect for prosody targets tended to be reduced with increasing scores on alexithymia, while no behavioral differences were observed for music and word targets. At the electrophysiological level, alexithymia was associated with significantly smaller N400 amplitudes in response to affectively incongruent music and speech targets, but not to incongruent word targets. Conclusions: Our results suggest a reduced sensitivity for the emotional qualities of speech and music in alexithymia during affective categorization. This deficit becomes evident primarily in situations in which a verbalization of emotional information is required
Safety and Efficacy of Methylene Blue Combined with Artesunate or Amodiaquine for Uncomplicated Falciparum Malaria: A Randomized Controlled Trial from Burkina Faso
Besides existing artemisinin-based combination therapies, alternative safe, effective and affordable drug combinations against falciparum malaria are needed. Methylene blue (MB) was the first synthetic antimalarial drug ever used, and recent studies have been promising with regard to its revival in malaria therapy. The objective of this study was to assess the safety and efficacy of two MB-based malaria combination therapies, MB-artesunate (AS) and MB-amodiaquine (AQ), compared to the local standard of care, AS-AQ, in Burkina Faso.Open-label randomised controlled phase II study in 180 children aged 6-10 years with uncomplicated falciparum malaria in Nouna, north-western Burkina Faso. Follow-up was for 28 days and analysis by intention-to-treat. The treatment groups were similar in baseline characteristics and there was only one loss to follow-up. No drug-related serious adverse events and no deaths occurred. MB-containing regimens were associated with mild vomiting and dysuria. No early treatment failures were observed. Parasite clearance time differed significantly among groups and was the shortest with MB-AS. By day 14, the rates of adequate clinical and parasitological response after PCR-based correction for recrudescence were 87% for MB-AS, 100% for MB-AQ (p = 0.004), and 100% for AS-AQ (p = 0.003). By day 28, the respective figure was lowest for MB-AS (62%), intermediate for the standard treatment AS-AQ (82%; p = 0.015), and highest for MB-AQ (95%; p<0.001; p = 0.03).MB-AQ is a promising alternative drug combination against malaria in Africa. Moreover, MB has the potential to further accelerate the rapid parasite clearance of artemisinin-based combination therapies. More than a century after the antimalarial properties of MB had been described, its role in malaria control deserves closer attention.ClinicalTrials.gov NCT00354380
Expression of a malarial Hsp70 improves defects in chaperone-dependent activities in ssa1 mutant yeast
Plasmodium falciparum causes the most virulent form of malaria and encodes a large number of molecular chaperones. Because the parasite encounters radically different environments during its lifecycle, many members of this chaperone ensemble may be essential for P. falciparum survival. Therefore, Plasmodium chaperones represent novel therapeutic targets, but to establish the mechanism of action of any developed therapeutics, it is critical to ascertain the functions of these chaperones. To this end, we report the development of a yeast expression system for PfHsp70-1, a P. falciparum cytoplasmic chaperone. We found that PfHsp70-1 repairs mutant growth phenotypes in yeast strains lacking the two primary cytosolic Hsp70s, SSA1 and SSA2, and in strains harboring a temperature sensitive SSA1 allele. PfHsp70-1 also supported chaperone-dependent processes such as protein translocation and ER associated degradation, and ameliorated the toxic effects of oxidative stress. By introducing engineered forms of PfHsp70-1 into the mutant strains, we discovered that rescue requires PfHsp70-1 ATPase activity. Together, we conclude that yeast can be co-opted to rapidly uncover specific cellular activities mediated by malarial chaperones. © 2011 Bell et al
Gene Expression Patterns in Peripheral Blood Correlate with the Extent of Coronary Artery Disease
Systemic and local inflammation plays a prominent role in the pathogenesis of atherosclerotic coronary artery disease, but the relationship of whole blood gene expression changes with coronary disease remains unclear. We have investigated whether gene expression patterns in peripheral blood correlate with the severity of coronary disease and whether these patterns correlate with the extent of atherosclerosis in the vascular wall
MrkH, a Novel c-di-GMP-Dependent Transcriptional Activator, Controls Klebsiella pneumoniae Biofilm Formation by Regulating Type 3 Fimbriae Expression
Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae expression is coordinated with other gene expression programs in K. pneumoniae to promote biofilm formation to implanted medical devices
A comprehensive overview of radioguided surgery using gamma detection probe technology
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
- …