165 research outputs found

    New Chiral Phases of Superfluid 3He Stabilized by Anisotropic Silica Aerogel

    Get PDF
    A rich variety of Fermi systems condense by forming bound pairs, including high temperature [1] and heavy fermion [2] superconductors, Sr2RuO4 [3], cold atomic gases [4], and superfluid 3He [5]. Some of these form exotic quantum states having non-zero orbital angular momentum. We have discovered, in the case of 3He, that anisotropic disorder, engineered from highly porous silica aerogel, stabilizes a chiral superfluid state that otherwise would not exist. Additionally, we find that the chiral axis of this state can be uniquely oriented with the application of a magnetic field perpendicular to the aerogel anisotropy axis. At suffciently low temperature we observe a sharp transition from a uniformly oriented chiral state to a disordered structure consistent with locally ordered domains, contrary to expectations for a superfluid glass phase [6].Comment: 6 pages, 4 figure, and Supplementary Informatio

    An Intact Kidney Slice Model to Investigate Vasa Recta Properties and Function in situ

    Get PDF
    Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in ‘live’ kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10–30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow

    Simulation modeling for stratified breast cancer screening : a systematic review of cost and quality of life assumptions

    Get PDF
    BACKGROUND: The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. METHODS: A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. RESULTS: Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. CONCLUSION: This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters

    Comparison of flow characteristics and vascular reactivity of radial artery and long saphenous vein grafts [NCT00139399]

    Get PDF
    BACKGROUND: The morphological and functional differences between arteries and veins may have implications on coronary artery bypass graft (CABG) survival. Although subjective differences have been observed between radial artery (RA) and long saphenous venous (LSV) grafts, these have not been quantified. This study assessed and compared the flow characteristics and in-vivo graft flow responses of RA and LSV aorto-coronary grafts. METHODS: Angiograms from 52 males taken 3.7 ± 1.0 months after CABG surgery were analyzed using adjusted Thrombolysis in Myocardial Infarction (TIMI) frame count. Graft and target coronary artery dimensions were measured using quantitative coronary angiography. Estimated TIMI velocity (V(E)) and volume flow (F(E)) were then calculated. A further 7 patients underwent in-vivo graft flow responses assessments to adenosine, acetylcholine and isosorbide dinitrate (ISDN) using intravascular Doppler. RESULTS: The V(E )for RA grafts was significantly greater than LSV grafts (P = 0.002), however there was no difference in volume F(E )(P = 0.20). RA grafts showed positive endothelium-dependent and -independent vasodilatation, and LSV grafts showed no statistically significant response to adenosine and acetylcholine. There was no difference in flow velocity or volume responses. Seven RA grafts (11%) had compromised patency (4 (6%) ≥ 50% stenosis in the proximal/distal anastomoses, and 3 (5%) diffuse narrowing). Thirty-seven (95%) LSV grafts achieved perfect patency and 2 (5%) were occluded. CONCLUSION: The flow characteristics and flow responses of the RA graft suggest that it is a more physiological conduit than the LSV graft. The clinical relevance of the balance between imperfect patency versus the more physiological vascular function in the RA graft may be revealed by the 5-year angiographic follow-up of this trial

    Split Course Hyperfractionated Accelerated Radio-Chemotherapy (SCHARC) for patients with advanced head and neck cancer: Influence of protocol deviations and hemoglobin on overall survival, a retrospective analysis

    Get PDF
    BACKGROUND: The advantage of hyperfractionated accelerated radiation therapy for advanced head and neck cancer has been reported. Furthermore, randomized trials and meta-analyses have confirmed the survival benefit of additional chemotherapy to radiotherapy. We retrospectively analyzed the efficiency and toxicity of the Regensburg standard therapy protocol "SCHARC" and the overall survival of our patients. METHODS: From 1997 to 2004, 64 patients suffering from advanced head and neck cancer (88 % stage IV, 12 % stage III) were assigned to receive the SCHARC protocol. Around half of the patients were diagnosed with oro-hypopharynx carcinoma (52 %), one third with tongue and floor of mouth tumors (29 %) and one fifth (19 %) suffered from H & N cancer at other sites. The schedule consisted of one therapy block with 30 Gy in 20 fractions over a two week period with concomitant chemotherapy (d 1–5: 20 mg/m(2)/d DDP + 750–1000 mg/m(2)/d 5FU (cont. infusion). This therapy block was repeated after a fortnight break up to a cumulative dose of 60 Gy and followed by a boost up to 70 Gy (69–70.5 Gy). All patients assigned to this scheme were included in the survival evaluation. RESULTS: Forty patients (63 %) received both radiation and chemotherapy according to the protocol. The mean follow up was 2.3 years (829 d) and the median follow up was 1.9 years (678 d), respectively. The analysis of survival revealed an estimated 3 year overall survival rate of 57 %. No patient died of complications, 52 patients (80 %) had acute grade 2–3 mucositis, and 33 patients (58 %) suffered from acute grade 3 skin toxicity. Leucopenia was no major problem (mean nadir 3.4 g/nl, no patient < 1.0 g/nl) and the mean hemoglobin value decreased from 13.2 to 10.5 g/dl. Univariate analysis of survival showed a better outcome for patients with a hemoglobin nadir >10.5 g/dl and for patients who completed the protocol. CONCLUSION: The SCHARC protocol was effective in patients diagnosed with advanced head and neck cancer. It led to long-term disease control and survival in about 50 % of the patients with significant but acceptable toxicity. Most patients were not anemic at beginning of therapy. Therefore, we could assess the influence of pre-treatment hemoglobin on survival. However, a low hemoglobin nadir was associated with poor outcome. This result suggests an influence of anemia during therapy on prognosis

    Regulation of Signaling at Regions of Cell-Cell Contact by Endoplasmic Reticulum-Bound Protein-Tyrosine Phosphatase 1B

    Get PDF
    Protein-tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed PTP that is anchored to the endoplasmic reticulum (ER). PTP1B dephosphorylates activated receptor tyrosine kinases after endocytosis, as they transit past the ER. However, PTP1B also can access some plasma membrane (PM)-bound substrates at points of cell-cell contact. To explore how PTP1B interacts with such substrates, we utilized quantitative cellular imaging approaches and mathematical modeling of protein mobility. We find that the ER network comes in close proximity to the PM at apparently specialized regions of cell-cell contact, enabling PTP1B to engage substrate(s) at these sites. Studies using PTP1B mutants show that the ER anchor plays an important role in restricting its interactions with PM substrates mainly to regions of cell-cell contact. In addition, treatment with PTP1B inhibitor leads to increased tyrosine phosphorylation of EphA2, a PTP1B substrate, specifically at regions of cell-cell contact. Collectively, our results identify PM-proximal sub-regions of the ER as important sites of cellular signaling regulation by PTP1B

    A case of serendipity*

    Get PDF
    An account is given of how a sensitive bioassay system for measurement of the neurotransmitter acetylcholine serendipitously led to the identification of adenosine triphosphate (ATP) released in vitro from active skeletal muscle. Subsequent application of the identification procedures to exercising human muscle in vivo, cardiac muscle cells in vitro, and human erythrocytes exposed to hypoxia gave rise to the general concept of ATP as a molecule that could influence cell function from the extracellular direction. Mechanisms of ATP release from cells in terms of “trigger” events such as mechanical distortion of the membrane, depolarization of the membrane, and exposure to hypoxia are discussed. Potential therapeutic uses of extracellular ATP in cancer therapy, radiation therapy, and a possible influence upon aging are discussed. Possible roles (distant and local) of extracellular ATP released from muscle during whole body exercise are discussed

    Forced, not voluntary, exercise effectively induces neuroprotection in stroke

    Get PDF
    Previous treadmill exercise studies showing neuroprotective effects have raised questions as to whether exercise or the stress related to it may be key etiologic factors. In this study, we examined different exercise regimens (forced and voluntary exercise) and compared them with the effect of stress-only on stroke protection. Adult male Sprague-Dawley rats (n = 65) were randomly assigned to treatment groups for 3 weeks. These groups included control, treadmill exercise, voluntary running wheel exercise, restraint, and electric shock. Levels of the stress hormone, corticosterone, were measured in the different groups using ELISA. Animals from each group were then subjected to stroke induced by a 2-h middle cerebral artery (MCA) occlusion followed by 48-h reperfusion. Infarct volume was determined in each group, while changes in gene expression of stress-induced heat shock proteins (Hsp) 27 and 70 were compared using real-time PCR between voluntary and treadmill exercise groups. The level of corticosterone was significantly higher in both stress (P < 0.05) and treadmill exercise (P < 0.05) groups, but not in the voluntary exercise group. Infarct volume was significantly reduced (P < 0.01) following stroke in rats exercised on a treadmill. However, the amelioration of damage was not duplicated in voluntary exercise, even though running distance in the voluntary exercise group was significantly (P < 0.01) longer than that of the forced exercise group (4,828 vs. 900 m). Furthermore, rats in the electric shock group displayed a significantly increased (P < 0.01) infarct volume. Expression of both Hsp 27 and Hsp 70 mRNA was significantly increased (P < 0.01) in the treadmill exercise group as compared with that in the voluntary exercise group. These results suggest that exercise with a stressful component, rather than either voluntary exercise or stress alone, is better able to reduce infarct volume. This exercise-induced neuroprotection may be attributable to up-regulation of stress-induced heat shock proteins 27 and 70
    corecore