765 research outputs found
Reactor mixing angle from hybrid neutrino masses
In terms of its eigenvector decomposition, the neutrino mass matrix (in the
basis where the charged lepton mass matrix is diagonal) can be understood as
originating from a tribimaximal dominant structure with small deviations, as
demanded by data. If neutrino masses originate from at least two different
mechanisms, referred to as "hybrid neutrino masses", the experimentally
observed structure naturally emerges provided one mechanism accounts for the
dominant tribimaximal structure while the other is responsible for the
deviations. We demonstrate the feasibility of this picture in a fairly
model-independent way by using lepton-number-violating effective operators,
whose structure we assume becomes dictated by an underlying flavor
symmetry. We show that if a second mechanism is at work, the requirement of
generating a reactor angle within its experimental range always fixes the solar
and atmospheric angles in agreement with data, in contrast to the case where
the deviations are induced by next-to-leading order effective operators. We
prove this idea is viable by constructing an -based ultraviolet
completion, where the dominant tribimaximal structure arises from the type-I
seesaw while the subleading contribution is determined by either type-II or
type-III seesaw driven by a non-trivial singlet (minimal hybrid model).
After finding general criteria, we identify all the symmetries
capable of producing such -based minimal hybrid models.Comment: 18 pages, 5 figures. v3: section including sum rules added, accepted
by JHE
Minimal lepton flavor violating realizations of minimal seesaw models
We study the implications of the global U(1)R symmetry present in minimal
lepton flavor violating implementations of the seesaw mechanism for neutrino
masses. In the context of minimal type I seesaw scenarios with a slightly
broken U(1)R, we show that, depending on the R-charge assignments, two classes
of generic models can be identified. Models where the right-handed neutrino
masses and the lepton number breaking scale are decoupled, and models where the
parameters that slightly break the U(1)R induce a suppression in the light
neutrino mass matrix. We show that within the first class of models,
contributions of right-handed neutrinos to charged lepton flavor violating
processes are severely suppressed. Within the second class of models we study
the charged lepton flavor violating phenomenology in detail, focusing on mu to
e gamma, mu to 3e and mu to e conversion in nuclei. We show that sizable
contributions to these processes are naturally obtained for right-handed
neutrino masses at the TeV scale. We then discuss the interplay with the
effects of the right-handed neutrino interactions on primordial B - L
asymmetries, finding that sizable right-handed neutrino contributions to
charged lepton flavor violating processes are incompatible with the requirement
of generating (or even preserving preexisting) B - L asymmetries consistent
with the observed baryon asymmetry of the Universe.Comment: 21 pages, 4 figures; version 2: Discussion on possible generic models
extended, typos corrected, references added. Version matches publication in
JHE
The UV-SCOPE mission: ultraviolet spectroscopic characterization of planets and their environments
UV-SCOPE is a mission concept to determine the causes of atmospheric mass loss in exoplanets, investigate the mechanisms driving aerosol formation in hot Jupiters, and study the influence of the stellar environment on atmospheric evolution and habitability. As part of these investigations, the mission will generate a broad-purpose legacy database of time-domain ultraviolet (UV) spectra for nearly 200 stars and planets. The observatory consists of a 60 cm, f/10 telescope paired to a long-slit spectrograph, yielding simultaneous, almost continuous coverage between 1203 Å and 4000 Å, with resolutions ranging from 6000 to 240. The efficient instrument provides throughputs < 4% (far-UV; FUV) and < 15% (near-UV; NUV), comparable to HST/COS and much better than HST/STIS, over the same spectral range. A key design feature is the LiF prism, which serves as a dispersive element and provides high throughput even after accounting for radiation degradation. The use of two delta-doped Electron-Multiplying CCD detectors with UV-optimized, single-layer anti-reflection coatings provides high quantum efficiency and low detector noise. From the Earth-Sun second Lagrangian point, UV-SCOPE will continuously observe planetary transits and stellar variability in the full FUV-to-NUV range, with negligible astrophysical background. All these features make UV-SCOPE the ideal instrument to study exoplanetary atmospheres and the impact of host stars on their planets. UV-SCOPE was proposed to NASA as a Medium Explorer (MidEx) mission for the 2021 Announcement of Opportunity. If approved, the observatory will be developed over a 5-year period. Its primary science mission takes 34 months to complete. The spacecraft carries enough fuel for 6 years of operations
Statistical Methods in Recent HIV Noninferiority Trials: Reanalysis of 11 Trials
Background: In recent years the ‘‘noninferiority’ ’ trial has emerged as the new standard design for HIV drug development among antiretroviral patients often with a primary endpoint based on the difference in success rates between the two treatment groups. Different statistical methods have been introduced to provide confidence intervals for that difference. The main objective is to investigate whether the choice of the statistical method changes the conclusion of the trials. Methods: We presented 11 trials published in 2010 using a difference in proportions as the primary endpoint. In these trials, 5 different statistical methods have been used to estimate such confidence intervals. The five methods are described and applied to data from the 11 trials. The noninferiority of the new treatment is not demonstrated if the prespecified noninferiority margin it includes in the confidence interval of the treatment difference. Results: Results indicated that confidence intervals can be quite different according to the method used. In many situations, however, conclusions of the trials are not altered because point estimates of the treatment difference were too far from the prespecified noninferiority margins. Nevertheless, in few trials the use of different statistical methods led to different conclusions. In particular the use of ‘‘exact’ ’ methods can be very confusing. Conclusion: Statistical methods used to estimate confidence intervals in noninferiority trials have a strong impact on th
Patient Perspectives with Abbreviated versus Standard Pre-Test HIV Counseling in the Prenatal Setting: A Randomized-Controlled, Non-Inferiority Trial
In the US, an unacceptably high percentage of pregnant women do not undergo prenatal HIV testing. Previous studies have found increased uptake of prenatal HIV testing with abbreviated pre-test counseling, however little is known about patient decision making, testing satisfaction and knowledge in this setting.A randomized-controlled, non-inferiority trial was conducted from October 2006 through February 2008 at San Francisco General Hospital (SFGH), the public teaching hospital of the City and County of San Francisco. A total of 278 English- and Spanish-speaking pregnant women were randomized to receive either abbreviated or standard nurse-performed HIV test counseling at the initial prenatal visit. Patient decision making experience was compared between abbreviated versus standard HIV counseling strategies among a sample of low-income, urban, ethnically diverse prenatal patients. The primary outcome was the decisional conflict score (DCS) using O'Connor low-literacy scale and secondary outcomes included satisfaction with test decision, basic HIV knowledge and HIV testing uptake. We conducted an intention-to-treat analysis of 278 women--134 (48.2%) in the abbreviated arm (AA) and 144 (51.8%) in the standard arm (SA). There was no significant difference in the proportion of women with low decisional conflict (71.6% in AA vs. 76.4% in SA, p = .37), and the observed mean difference between the groups of 3.88 (95% CI: -0.65, 8.41) did not exceed the non-inferiority margin. HIV testing uptake was very high (97. 8%) and did not differ significantly between the 2 groups (99.3% in AA vs. 96.5% in SA, p = .12). Likewise, there was no difference in satisfaction with testing decision (97.8% in AA vs. 99.3% in SA, p = .36). However, women in AA had significantly lower mean HIV knowledge scores (78.4%) compared to women in SA (83.7%, p<0.01).This study suggests that streamlining the pre-test counseling process, while associated with slightly lower knowledge, does not compromise patient decision making or satisfaction regarding HIV testing.ClinicalTrials.gov NCT00503308
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
X-ray emission from the Sombrero galaxy: discrete sources
We present a study of discrete X-ray sources in and around the
bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival
Chandra observations with a total exposure of ~200 ks. With a detection limit
of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30
kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler
et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS
observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray
binaries (LMXBs). We quantify the differential luminosity functions (LFs) for
both the detected GC and field LMXBs, whose power-low indices (~1.1 for the
GC-LF and ~1.6 for field-LF) are consistent with previous studies for
elliptical galaxies. With precise sky positions of the GCs without a detected
X-ray source, we further quantify, through a fluctuation analysis, the GC LF at
fainter luminosities down to 1E35 erg/s. The derived index rules out a
faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent
findings in several elliptical galaxies and the bulge of M31. On the other
hand, the 2-6 keV unresolved emission places a tight constraint on the field
LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101
sources in the halo of Sombrero. The presence of these sources cannot be
interpreted as galactic LMXBs whose spatial distribution empirically follows
the starlight. Their number is also higher than the expected number of cosmic
AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray
surveys. We suggest that either the cosmic X-ray background is unusually high
in the direction of Sombrero, or a distinct population of X-ray sources is
present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV
The azimuthal anisotropy of charged particles in PbPb collisions at
nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS
detector at the LHC over an extended transverse momentum (pt) range up to
approximately 60 GeV. The data cover both the low-pt region associated with
hydrodynamic flow phenomena and the high-pt region where the anisotropies may
reflect the path-length dependence of parton energy loss in the created medium.
The anisotropy parameter (v2) of the particles is extracted by correlating
charged tracks with respect to the event-plane reconstructed by using the
energy deposited in forward-angle calorimeters. For the six bins of collision
centrality studied, spanning the range of 0-60% most-central events, the
observed v2 values are found to first increase with pt, reaching a maximum
around pt = 3 GeV, and then to gradually decrease to almost zero, with the
decline persisting up to at least pt = 40 GeV over the full centrality range
measured.Comment: Replaced with published version. Added journal reference and DO
Compressed representation of a partially defined integer function over multiple arguments
In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
- …