545 research outputs found
On the complexity of color-avoiding site and bond percolation
The mathematical analysis of robustness and error-tolerance of complex
networks has been in the center of research interest. On the other hand, little
work has been done when the attack-tolerance of the vertices or edges are not
independent but certain classes of vertices or edges share a mutual
vulnerability. In this study, we consider a graph and we assign colors to the
vertices or edges, where the color-classes correspond to the shared
vulnerabilities. An important problem is to find robustly connected vertex
sets: nodes that remain connected to each other by paths providing any type of
error (i.e. erasing any vertices or edges of the given color). This is also
known as color-avoiding percolation. In this paper, we study various possible
modeling approaches of shared vulnerabilities, we analyze the computational
complexity of finding the robustly (color-avoiding) connected components. We
find that the presented approaches differ significantly regarding their
complexity.Comment: 14 page
Visualization of endogenous p27 and Ki67 reveals the importance of a c-Myc-driven metabolic switch in promoting survival of quiescent cancer cells
Rationale: Recurrent and metastatic cancers often undergo a period of dormancy, which is closely associated with cellular quiescence, a state whereby cells exit the cell cycle and are reversibly arrested in G0 phase. Curative cancer treatment thus requires therapies that either sustain the dormant state of quiescent cancer cells, or preferentially, eliminate them. However, the mechanisms responsible for the survival of quiescent cancer cells remain obscure. Methods: Dual genome-editing was carried out using a CRISPR/Cas9-based system to label endogenous p27 and Ki67 with the green and red fluorescent proteins EGFP and mCherry, respectively, in melanoma cells. Analysis of transcriptomes of isolated EGFP-p27highmCherry-Ki67low quiescent cells was conducted at bulk and single cell levels using RNA-sequencing. The extracellular acidification rate and oxygen consumption rate were measured to define metabolic phenotypes. SiRNA and inducible shRNA knockdown, chromatin immunoprecipitation and luciferase reporter assays were employed to elucidate mechanisms of the metabolic switch in quiescent cells. Results: Dual labelling of endogenous p27 and Ki67 with differentiable fluorescent probes allowed for visualization, isolation, and analysis of viable p27highKi67low quiescent cells. Paradoxically, the proto-oncoprotein c-Myc, which commonly drives malignant cell cycle progression, was expressed at relatively high levels in p27highKi67low quiescent cells and supported their survival through promoting mitochondrial oxidative phosphorylation (OXPHOS). In this context, c-Myc selectively transactivated genes encoding OXPHOS enzymes, including subunits of isocitric dehydrogenase 3 (IDH3), whereas its binding to cell cycle progression gene promoters was decreased in quiescent cells. Silencing of c-Myc or the catalytic subunit of IDH3, IDH3α, preferentially killed quiescent cells, recapitulating the effect of treatment with OXPHOS inhibitors. Conclusion: These results establish a rigorous experimental system for investigating cellular quiescence, uncover the high selectivity of c-Myc in activating OXPHOS genes in quiescent cells, and propose OXPHOS targeting as a potential therapeutic avenue to counter cancer cells in quiescence
A new concept for the combination of optical interferometers and high-resolution spectrographs
The combination of high spatial and spectral resolution in optical astronomy
enables new observational approaches to many open problems in stellar and
circumstellar astrophysics. However, constructing a high-resolution
spectrograph for an interferometer is a costly and time-intensive undertaking.
Our aim is to show that, by coupling existing high-resolution spectrographs to
existing interferometers, one could observe in the domain of high spectral and
spatial resolution, and avoid the construction of a new complex and expensive
instrument. We investigate in this article the different challenges which arise
from combining an interferometer with a high-resolution spectrograph. The
requirements for the different sub-systems are determined, with special
attention given to the problems of fringe tracking and dispersion. A concept
study for the combination of the VLTI (Very Large Telescope Interferometer)
with UVES (UV-Visual Echelle Spectrograph) is carried out, and several other
specific instrument pairings are discussed. We show that the proposed
combination of an interferometer with a high-resolution spectrograph is indeed
feasible with current technology, for a fraction of the cost of building a
whole new spectrograph. The impact on the existing instruments and their
ongoing programs would be minimal.Comment: 27 pages, 9 figures, Experimental Astronomy; v2: accepted versio
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
Quantum dynamics in strong fluctuating fields
A large number of multifaceted quantum transport processes in molecular
systems and physical nanosystems can be treated in terms of quantum relaxation
processes which couple to one or several fluctuating environments. A thermal
equilibrium environment can conveniently be modelled by a thermal bath of
harmonic oscillators. An archetype situation provides a two-state dissipative
quantum dynamics, commonly known under the label of a spin-boson dynamics. An
interesting and nontrivial physical situation emerges, however, when the
quantum dynamics evolves far away from thermal equilibrium. This occurs, for
example, when a charge transferring medium possesses nonequilibrium degrees of
freedom, or when a strong time-dependent control field is applied externally.
Accordingly, certain parameters of underlying quantum subsystem acquire
stochastic character. Herein, we review the general theoretical framework which
is based on the method of projector operators, yielding the quantum master
equations for systems that are exposed to strong external fields. This allows
one to investigate on a common basis the influence of nonequilibrium
fluctuations and periodic electrical fields on quantum transport processes.
Most importantly, such strong fluctuating fields induce a whole variety of
nonlinear and nonequilibrium phenomena. A characteristic feature of such
dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs
<p>Abstract</p> <p>Background</p> <p>The family Tetranychidae (Chelicerata: Acari) includes ~1200 species, many of which are of agronomic importance. To date, mitochondrial genomes of only two Tetranychidae species have been sequenced, and it has been found that these two mitochondrial genomes are characterized by many unusual features in genome organization and structure such as gene order and nucleotide frequency. The scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). Information on Tetranychidae mitochondrial genomes is quite important for phylogenetic evaluation and population genetics, as well as the molecular evolution of functional genes such as acaricide-resistance genes. In this study, we sequenced the complete mitochondrial genome of <it>Panonychus citri </it>(Family Tetranychidae), a worldwide citrus pest, and provide a comparison to other Acari.</p> <p>Results</p> <p>The mitochondrial genome of <it>P. citri </it>is a typical circular molecule of 13,077 bp, and contains the complete set of 37 genes that are usually found in metazoans. This is the smallest mitochondrial genome within all sequenced Acari and other Chelicerata, primarily due to the significant size reduction of protein coding genes (PCGs), a large rRNA gene, and the A + T-rich region. The mitochondrial gene order for <it>P. citri </it>is the same as those for <it>P. ulmi </it>and <it>Tetranychus urticae</it>, but distinctly different from other Acari by a series of gene translocations and/or inversions. The majority of the <it>P. citri </it>mitochondrial genome has a high A + T content (85.28%), which is also reflected by AT-rich codons being used more frequently, but exhibits a positive GC-skew (0.03). The Acari mitochondrial <it>nad1 </it>exhibits a faster amino acid substitution rate than other genes, and the variation of nucleotide substitution patterns of PCGs is significantly correlated with the G + C content. Most tRNA genes of <it>P. citri </it>are extremely truncated and atypical (44-65, 54.1 ± 4.1 bp), lacking either the T- or D-arm, as found in <it>P. ulmi</it>, <it>T. urticae</it>, and other Acariform mites.</p> <p>Conclusions</p> <p>The <it>P. citri </it>mitochondrial gene order is markedly different from those of other chelicerates, but is conserved within the family Tetranychidae indicating that high rearrangements have occurred after Tetranychidae diverged from other Acari. Comparative analyses suggest that the genome size, gene order, gene content, codon usage, and base composition are strongly variable among Acari mitochondrial genomes. While extremely small and unusual tRNA genes seem to be common for Acariform mites, further experimental evidence is needed.</p
ZNF93 Increases Resistance to ET-743 (Trabectedin; Yondelis®) and PM00104 (Zalypsis®) in Human Cancer Cell Lines
ET-743 (trabectedin, Yondelis) and PM00104 (Zalypsis) are marine derived compounds that have antitumor activity. ET-743 and PM00104 exposure over sustained periods of treatment will result in the development of drug resistance, but the mechanisms which lead to resistance are not yet understood.Human chondrosarcoma cell lines resistant to ET-743 (CS-1/ER) or PM00104 (CS-1/PR) were established in this study. The CS-1/ER and CS-1/PR exhibited cross resistance to cisplatin and methotrexate but not to doxorubicin. Human Affymetrix Gene Chip arrays were used to examine relative gene expression in these cell lines. We found that a large number of genes have altered expression levels in CS-1/ER and CS-1/PR when compared to the parental cell line. 595 CS-1/ER and 498 CS-1/PR genes were identified as overexpressing; 856 CS-1/ER and 874 CS-1/PR transcripts were identified as underexpressing. Three zinc finger protein (ZNF) genes were on the top 10 overexpressed genes list. These genes have not been previously associated with drug resistance in tumor cells. Differential expressions of ZNF93 and ZNF43 genes were confirmed in both CS-1/ER and CS-1/PR resistant cell lines by real-time RT-PCR. ZNF93 was overexpressed in two ET-743 resistant Ewing sarcoma cell lines as well as in a cisplatin resistant ovarian cancer cell line, but was not overexpressed in paclitaxel resistant cell lines. ZNF93 knockdown by siRNA in CS-1/ER and CS-1/PR caused increased sensitivity for ET-743, PM00104, and cisplatin. Furthermore, ZNF93 transfected CS-1 cells are relatively resistant to ET-743, PM00104 and cisplatin.This study suggests that zinc finger proteins, and ZNF93 in particular, are involved in resistance to ET-743 and PM00104
Biomechanical testing of fixed and adjustable femoral cortical suspension devices for ACL reconstruction under high loads and extended cyclic loading
Purpose: To compare loop elongation after 5000 cycles, loop-elongation at failure, and load at failure of the fixed-loop G-Lok device and three adjustable-loop devices (UltraButton, RigidLoop Adjustable and ProCinch RT), during testing over extended cycles under high loading.
Methods: Five devices of each type were tested on a custom-built rig fixed to an Instron machine. The testing protocol had four stages: preloading, cyclic preconditioning, incremental cyclic loading and pull-to-failure. Outcome measures were loop elongation after 5000 cycles, loop-elongation at failure, and load at failure.
Results: The loop elongation after 5000 cycles for G-Lok was 1.46 ± 0.25 mm, which was comparable to that of RigidLoop (1.51 ± 0.16 mm, p = 1.000) and ProCinch (1.60 ± 0.09 mm, p = 1.000). In comparison, the loop elongation for UltraButton was 2.66 ± 0.28 mm, which was significantly larger than all other devices (p = 0.048). The failure load for all devices ranged between 1455 and 2178 N. G-Lok was significantly stronger than all adjustable-loop devices (p = 0.048). The elongation at failure was largest for UltraButton (4.20 ± 0.33 mm), which was significantly greater than G-Lok (3.17 ± 0.33 mm, p = 0.048), RigidLoop (2.88 ± 0.20 mm, p = 0.048) and ProCinch (2.78 ± 0.08 mm, p = 0.048). There was no significant difference in elongation at failure for the rest of the devices.
Conclusions: Our study has shown that the G-Lok fixed-loop device and the three adjustable-loop devices (UltraButton, RigidLoop Adjustable and ProCinch RT) all elongated less than 3 mm during testing over an extended number of cycles at high loads, nonetheless, the fixed loop device performed best in terms of least elongation and highest load at failure.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.published version, accepted versio
The mitochondrial genome of Sinentomon erythranum (Arthropoda: Hexapoda: Protura): an example of highly divergent evolution
<p>Abstract</p> <p>Background</p> <p>The phylogenetic position of the Protura, traditionally considered the most basal hexapod group, is disputed because it has many unique morphological characters compared with other hexapods. Although mitochondrial genome information has been used extensively in phylogenetic studies, such information is not available for the Protura. This has impeded phylogenetic studies on this taxon, as well as the evolution of the arthropod mitochondrial genome.</p> <p>Results</p> <p>In this study, the mitochondrial genome of <it>Sinentomon erythranum </it>was sequenced, as the first proturan species to be reported. The genome contains a number of special features that differ from those of other hexapods and arthropods. As a very small arthropod mitochondrial genome, its 14,491 nucleotides encode 37 typical mitochondrial genes. Compared with other metazoan mtDNA, it has the most biased nucleotide composition with T = 52.4%, an extreme and reversed AT-skew of -0.351 and a GC-skew of 0.350. Two tandemly repeated regions occur in the A+T-rich region, and both could form stable stem-loop structures. Eighteen of the 22 tRNAs are greatly reduced in size with truncated secondary structures. The gene order is novel among available arthropod mitochondrial genomes. Rearrangements have involved in not only small tRNA genes, but also PCGs (protein-coding genes) and ribosome RNA genes. A large block of genes has experienced inversion and another nearby block has been reshuffled, which can be explained by the tandem duplication and random loss model. The most remarkable finding is that <it>trnL2(UUR) </it>is not located between <it>cox1 </it>and <it>cox2 </it>as observed in most hexapod and crustacean groups, but is between <it>rrnL </it>and <it>nad1 </it>as in the ancestral arthropod ground pattern. The "<it>cox1</it>-<it>cox2</it>" pattern was further confirmed in three more representative proturan species. The phylogenetic analyses based on the amino acid sequences of 13 mitochondrial PCGs suggest <it>S</it>. <it>erythranum </it>failed to group with other hexapod groups.</p> <p>Conclusions</p> <p>The mitochondrial genome of <it>S. erythranum </it>shows many different features from other hexapod and arthropod mitochondrial genomes. It underwent highly divergent evolution. The "<it>cox1</it>-<it>cox2</it>" pattern probably represents the ancestral state for all proturan mitogenomes, and suggests a long evolutionary history for the Protura.</p
- …