48 research outputs found

    Phase I/II study of first-line irinotecan combined with 5-fluorouracil and folinic acid Mayo Clinic schedule in patients with advanced colorectal cancer

    Get PDF
    BACKGROUND: This multicentre phase I/II study was designed to determine the maximum tolerated dose of irinotecan when combined with 5-fluorouracil and folinic acid according to the Mayo Clinic schedule and to evaluate the activity of this combination as first-line therapy in patients with advanced colorectal cancer. METHODS: Sixty-three patients received irinotecan (250 or 300 mg/m(2), 30- to 90-minute intravenous infusion on day 1), immediately followed by folinic acid (20 mg/m(2)/day) and 5-fluorouracil (425 mg/m(2), 15-minute bolus infusion) days 1 to 5, every four weeks. RESULTS: Diarrhoea was dose limiting at 300 mg/m(2 )irinotecan in combination with 5-fluorouracil and folinic acid, and this was determined to be the maximum tolerated dose. Grade 3–4 neutropenia was the most frequently reported toxicity. The recommended dose of irinotecan for the phase II part of the study was 250 mg/m(2). The response rate for the evaluable patient population was 36% (13/36), and 44% (16 patients) had stable disease (including 19% of minor response). For the intention-to-treat population, the response rate was 29% (14/49) and 35% (17 patients) stable disease (including 14% of minor response). The median time to progression was 7.0 months and the median survival was 12.0 months. Grade 3–4 non-haematological drug-related toxicities included delayed diarrhoea, stomatitis, fatigue, and nausea/vomiting. There were three deaths due to septic shock that were possibly or probably treatment-related. CONCLUSIONS: This regimen of irinotecan in combination with the Mayo Clinic schedule of bolus 5-fluorouracil/folinic acid every four weeks showed activity as first-line therapy in patients with advanced colorectal cancer. In keeping with other published results of studies using bolus 5-fluorouracil combined with irinotecan, the use of this regimen is limited by a relatively high rate of grade 3–4 neutropenia, and the combination of irinotecan and infusional 5-fluorouracil / folinic acid should remain the regimen of first choice

    A ‘modified de Gramont’ regimen of fluorouracil, alone and with oxaliplatin, for advanced colorectal cancer

    Get PDF
    The standard de Gramont (dG) regimen of fortnightly leucovorin, bolus fluorouracil and 22-h infusion of fluorouracil, d1+2, and the same regimen plus oxaliplatin, are effective but also cumbersome. We therefore present simplified ‘Modified de Gramont’ (MdG) regimens. Forty-six advanced gastrointestinal cancer patients entered a dose-exploring study of MdG, including an expanded cohort of colorectal cancer patients at optimum dose. Treatment (fortnightly) comprised: 2-h i.v.i. leucovorin (350 mg d,l-LV or 175 mg l-LV, not adjusted for patient surface area); bolus fluorouracil (400 mg m−2), then ambulatory 46-h fluorouracil infusion (2000–3600 mg m−2, cohort escalation). Subsequently, 62 colorectal patients (25 unpretreated; 37 fluorouracil-resistant) received MdG plus oxaliplatin (OxMdG) 85 mg m−2. Fluorouracil pharmacokinetics during MdG were compared with dG. The optimum fluorouracil doses for MdG alone were determined as 400 mg m−2 bolus + 2800 mg m−2 46-h infusion. A lower dose of 400 mg m−2 bolus + 2400 mg m−2 infusion which, like dG produces minimal toxicity, was chosen for the OxMdG combination. Fluorouracil exposure (AUC0–48 h) at this lower dose is equivalent to dG. With OxMdG, grade 3–4 toxicity was rare (neutropenia 2.8% cycles; vomiting or diarrhoea <1% cycles), but despite this there were two infection-associated deaths. Oxaliplatin was omitted for cumulative neurotoxicity in 17 out of 62 patients. Objective responses in colorectal cancer patients were: 1st-line MdG (22 assessable): PR=36%, NC=32%, PD=32%. 1st-line OxMdG (24 assessable): CR/PR=72%; NC=20%; PD=8%; 2nd line OxMdG (34 assessable): PR=12%; NC=38%; PD=50%. MdG and OxMdG are convenient and well-tolerated. OxMdG was particularly active as 1st-line treatment of advanced colorectal cancer. Both regimens are being further evaluated in the current UK MRC phase III trial

    Evaluation of Continuous Tumor-Size-Based End Points as Surrogates for Overall Survival in Randomized Clinical Trials in Metastatic Colorectal Cancer

    Get PDF
    IMPORTANCE: Tumor measurements can be used to estimate time to nadir and depth of nadir as potential surrogates for overall survival (OS). OBJECTIVE: To assess time to nadir and depth of nadir as surrogates for OS in metastatic colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS: Pooled analysis of 20 randomized clinical trials within the Aide et Recherche en Cancerologie Digestive database, which contains academic and industry-sponsored trials, was conducted. Three sets of comparisons were performed: chemotherapy alone, antiangiogenic agents, and anti–epidermal growth factor receptor agents in first-line treatment for patients with metastatic colorectal cancer. MAIN OUTCOMES AND MEASURES: Surrogacy of time to nadir and depth of nadir was assessed at the trial level based on joint modeling of relative tumor-size change vs baseline and OS. Treatment effects on time to nadir and on depth of nadir were defined in terms of between-arm differences in time to nadir and in depth of nadir, and both were assessed in linear regressions for their correlation with treatment effects (hazard ratios) on OS within each set. The strengths of association were quantified using sample-size–weighted coefficients of determination (R2), with values closer to 1.00 indicating stronger association. At the patient level, the correlation was assessed between modeled relative tumor-size change and OS. RESULTS: For 14 chemotherapy comparisons in 4289 patients, the R2 value was 0.63 (95% CI, 0.30-0.96) for the association between treatment effects on time to nadir and OS and 0.08 (95% CI, 0-0.37) for depth of nadir and OS. For 11 antiangiogenic agent comparisons (4854 patients), corresponding values of R2 were 0.25 (95% CI, 0-0.72) and 0.06 (95% CI, 0-0.35). For 8 anti–epidermal growth factor receptor comparisons (2684 patients), corresponding values of R2 were 0.24 (95% CI, 0-0.83) and 0.21 (95% CI, 0-0.78). CONCLUSIONS AND RELEVANCE: In contrast with early reports favoring depth of response as a surrogate, these results suggest that neither time to nadir nor depth of nadir is an acceptable surrogate for OS in the first-line treatment of metastatic colorectal cancer

    The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients

    Get PDF
    Genomics and proteomics will improve outcome prediction in cancer and have great potential to help in the discovery of unknown mechanisms of metastasis, ripe for therapeutic exploitation. Current methods of prognosis estimation rely on clinical data, anatomical staging and histopathological features. It is hoped that translational genomic and proteomic research will discriminate more accurately than is possible at present between patients with a good prognosis and those who carry a high risk of recurrence. Rational treatments, targeted to the specific molecular pathways of an individual’s high-risk tumor, are at the core of tailored therapy. The aim of targeted oncology is to select the right patient for the right drug at precisely the right point in their cancer journey. Optical proteomics uses advanced optical imaging technologies to quantify the activity states of and associations between signaling proteins by measuring energy transfer between fluorophores attached to specific proteins. Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) assays are suitable for use in cell line models of cancer, fresh human tissues and formalin-fixed paraffin-embedded tissue (FFPE). In animal models, dynamic deep tissue FLIM/FRET imaging of cancer cells in vivo is now also feasible. Analysis of protein expression and post-translational modifications such as phosphorylation and ubiquitination can be performed in cell lines and are remarkably efficiently in cancer tissue samples using tissue microarrays (TMAs). FRET assays can be performed to quantify protein-protein interactions within FFPE tissue, far beyond the spatial resolution conventionally associated with light or confocal laser microscopy. Multivariate optical parameters can be correlated with disease relapse for individual patients. FRET-FLIM assays allow rapid screening of target modifiers using high content drug screens. Specific protein-protein interactions conferring a poor prognosis identified by high content tissue screening will be perturbed with targeted therapeutics. Future targeted drugs will be identified using high content/throughput drug screens that are based on multivariate proteomic assays. Response to therapy at a molecular level can be monitored using these assays while the patient receives treatment: utilizing re-biopsy tumor tissue samples in the neoadjuvant setting or by examining surrogate tissues. These technologies will prove to be both prognostic of risk for individuals when applied to tumor tissue at first diagnosis and predictive of response to specifically selected targeted anticancer drugs. Advanced optical assays have great potential to be translated into real-life benefit for cancer patients
    corecore