42 research outputs found

    Nonlinear Impurity Modes in Homogeneous and Periodic Media

    Full text link
    We analyze the existence and stability of nonlinear localized waves described by the Kronig-Penney model with a nonlinear impurity. We study the properties of such waves in a homogeneous medium, and then analyze new effects introduced by periodicity of the medium parameters. In particular, we demonstrate the existence of a novel type of stable nonlinear band-gap localized states, and also reveal an important physical mechanism of the oscillatory wave instabilities associated with the band-gap wave resonances.Comment: 11 pages, 3 figures; To be published in: Proceedings of the NATO Advanced Research Workshop "Nonlinearity and Disorder: Theory and Applications" (Tashkent, 2-6 Oct, 2000) Editors: P.L. Christiansen and F.K. Abdullaev (Kluwer, 2001

    Stimulated emission of polarization-entangled photons

    Get PDF
    Entangled photon pairs -- discrete light quanta that exhibit non-classical correlations -- play a crucial role in quantum information science (for example in demonstrations of quantum non-locality and quantum cryptography). At the macroscopic optical field level non-classical correlations can also be important, as in the case of squeezed light, entangled light beams and teleportation of continuous quantum variables. Here we use stimulated parametric down-conversion to study entangled states of light that bridge the gap between discrete and macroscopic optical quantum correlations. We demonstrate experimentally the onset of laser-like action for entangled photons. This entanglement structure holds great promise in quantum information science where there is a strong demand for entangled states of increasing complexity.Comment: 5 pages, 4 figures, RevTeX

    Optomechanical Crystals

    Get PDF
    Structured, periodic optical materials can be used to form photonic crystals capable of dispersing, routing, and trapping light. A similar phenomena in periodic elastic structures can be used to manipulate mechanical vibrations. Here we present the design and experimental realization of strongly coupled optical and mechanical modes in a planar, periodic nanostructure on a silicon chip. 200-Terahertz photons are co-localized with mechanical modes of Gigahertz frequency and 100-femtogram mass. The effective coupling length, which describes the strength of the photon-phonon interaction, is as small as 2.9 microns, which, together with minute oscillator mass, allows all-optical actuation and transduction of nanomechanical motion with near quantum-limited sensitivity. Optomechanical crystals have many potential applications, from RF-over-optical communication to the study of quantum effects in mesoscopic mechanical systems.Comment: 16 pages, 7 figure

    Advanced Interconnect Technologies

    No full text
    Part 2: Poster PapersInternational audienceAdvanced interconnect technologies play a prominent role in scaling up the performance of data center networks. Spatial Division Multiplexing (SDM) photonic interconnects have been suggested as means to overcome capacity upgrade requirements and enable disaggregation in future data centers. Here, Holographic Optical Elements (HOE) are proposed for SDM photonic interconnects. The proposed coupling scheme entails the use of holograms as fan out components for coupling light from a source to multicore fibers (MCF). The scheme is versatile and can be adopted to any SDM fiber core arrangement. Appropriate Computer-Generated Holograms (CGHs) are designed for two kind of MCF and the HOE interconnect is evaluated in terms of performance variations against system and fabrication related parameters. Furthermore, the interconnect design is optimized for loss-sensitive applications

    Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L.

    No full text
    Large-insert bacterial artificial chromosome (BAC) libraries, plant-transformation-competent binary BAC (BIBAC) libraries, and simple sequence repeat (SSR) markers are essential for many aspects of genomics research. We constructed a BAC library and a BIBAC library from the nuclear DNA of chickpea, Cicer arietinum L., cv. Hadas, partially digested with HindIII and BamHI, respectively. The BAC library has 14,976 clones, with an average insert size of 121 kb, and the BIBAC library consists of 23,040 clones, with an average insert size of 145 kb. The combined libraries collectively cover ca. 7.0× genomes of chickpea. We screened the BAC library with eight synthetic SSR oligos, (GA)10, (GAA)7, (AT)10, (TAA)7, (TGA)7, (CA)10, (CAA)7, and (CCA)7. Positive BACs were selected, subcloned, and sequenced for SSR marker development. Two hundred and thirty-three new chickpea SSR markers were developed and characterized by PCR, using chickpea DNA as template. These results have demonstrated that BACs are an excellent source for SSR marker development in chickpea. We also estimated the distribution of the SSR loci in the chickpea genome. The SSR motifs (TAA) n and (GA) n were much more abundant than the others, and the distribution of the SSR loci appeared non-random. The BAC and BIBAC libraries and new SSR markers will provide valuable resources for chickpea genomics research and breeding (the libraries and their filters are available to the public at http://hbz.tamu.edu )
    corecore