19 research outputs found
Potential plasma markers of type 1 and type 2 leprosy reactions: a preliminary report
<p>Abstract</p> <p>Background</p> <p>The clinical management of leprosy Type 1 (T1R) and Type 2 (T2R) reactions pose challenges mainly because they can cause severe nerve injury and disability. No laboratory test or marker is available for the diagnosis or prognosis of leprosy reactions. This study simultaneously screened plasma factors to identify circulating biomarkers associated with leprosy T1R and T2R among patients recruited in Goiania, Central Brazil.</p> <p>Methods</p> <p>A nested case-control study evaluated T1R (n = 10) and TR2 (n = 10) compared to leprosy patients without reactions (n = 29), matched by sex and age-group (+/- 5 years) and histopathological classification. Multiplex bead based technique provided profiles of 27 plasma factors including 16 pro inflammatory cytokines: tumor necrosis factor-α (TNF-α), Interferon-γ (IFN-γ), interleukin (IL)- IL12p70, IL2, IL17, IL1 β, IL6, IL15, IL5, IL8, macrophage inflammatory protein (MIP)-1 alpha (MIP1α), 1 beta (MIP1β), regulated upon activation normal T-cell expressed and secreted (RANTES), monocyte chemoattractrant protein 1 (MCP1), CC-chemokine 11 (CCL11/Eotaxin), CXC-chemokine 10 (CXCL10/IP10); 4 anti inflammatory interleukins: IL4, IL10, IL13, IL1Rα and 7 growth factors: IL7, IL9, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), platelet-derived growth factor BB (PDGF BB), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF).</p> <p>Results</p> <p>Elevations of plasma CXCL10 (P = 0.004) and IL6 (p = 0.013) were observed in T1R patients compared to controls without reaction. IL6 (p = 0.05), IL7 (p = 0.039), and PDGF-BB (p = 0.041) were elevated in T2R. RANTES and GMCSF were excluded due to values above and below detection limit respectively in all samples.</p> <p>Conclusion</p> <p>Potential biomarkers of T1R identified were CXCL10 and IL6 whereas IL7, PDGF-BB and IL6, may be laboratory markers of TR2. Additional studies on these biomarkers may help understand the immunopathologic mechanisms of leprosy reactions and indicate their usefulness for the diagnosis and for the clinical management of these events.</p
Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods
With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage
Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain
The enormous quantity of food wastes discarded annually force to look for alternatives for this interesting feedstock. Thus, food bio-waste valorisation is one of the imperatives of the nowadays society. This review is the most comprehensive overview of currently existing technologies and processes in this field. It tackles classical and innovative physical, physico-chemical and chemical methods of food waste pre-treatment and extraction for recovery of added value compounds and detection by modern technologies and are an outcome of the COST Action EUBIS, TD1203 Food Waste Valorisation for Sustainable Chemicals, Materials and Fuels