67 research outputs found

    Penetration of left and right atrial wall and aortic root by an Amplatzer atrial septal occluder in a nine year old boy with Marfan syndrome: Case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To describe complications associated with Amplatzer septal occluders in a patient with Marfan syndrome</p> <p>Case presentation</p> <p>A nine-year-old boy with Marfan syndrome and a 22 mm atrial septal defect (ASD) was treated successfully by interventional closure of his ASD by placing a 24 mm Amplatzer septal occluder. Follow up examinations showed a good result but an increasing enlargement of aortic root, so the patient was scheduled for operation. Intraoperative findings showed a perforation of the left atrial roof and the non-coronary sinus by penetration of the occluder device as well as penetration into the right atrial wall. The occluder was resected, the ASD was closed and the aortic sinus was reconstructed using a Dacron patch.</p> <p>Conclusion</p> <p>We describe the first case of a patient with Marfan syndrome and an interventional closure of an ASD. Due to alterations of the connective tissue, as it is typical for patients with Marfan syndrome, the Amplatzer occluder probably perforated adjacent structures more easily as in non-affected individuals. Amplatzer occluders should be used with caution and follow up examinations should be performed in short intervals.</p

    Whole-genome array-CGH for detection of submicroscopic chromosomal imbalances in children with mental retardation

    Get PDF
    Chromosomal imbalances are the major cause of mental retardation (MR). Many of these imbalances are caused by submicroscopic deletions or duplications not detected by conventional cytogenetic methods. Microarray-based comparative genomic hybridization (array-CGH) is considered to be superior for the investigation of chromosomal aberrations in children with MR, and has been demonstrated to improve the diagnostic detection rate of these small chromosomal abnormalities. In this study we used 1 Mb genome-wide array-CGH to screen 48 children with MR and congenital malformations for submicroscopic chromosomal imbalances, where the underlying cause was unknown. All children were clinically investigated and subtelomere FISH analysis had been performed in all cases. Suspected microdeletion syndromes such as deletion 22q11.2, Williams-Beuren and Angelman syndromes were excluded before array-CGH analysis was performed. We identified de novo interstitial chromosomal imbalances in two patients (4%), and an interstitial deletion inherited from an affected mother in one patient (2%). In another two of the children (4%), suspected imbalances were detected but were also found in one of the non-affected parents. The yield of identified de novo alterations detected in this study is somewhat less than previously described, and might reflect the importance of which selection criterion of patients to be used before array-CGH analysis is performed. However, array-CGH proved to be a high-quality and reliable tool for genome-wide screening of MR patients of unknown etiology

    45S rDNA Regions Are Chromosome Fragile Sites Expressed as Gaps In Vitro on Metaphase Chromosomes of Root-Tip Meristematic Cells in Lolium spp

    Get PDF
    BACKGROUND: In humans, chromosome fragile sites are regions that are especially prone to forming non-staining gaps, constrictions or breaks in one or both of the chromatids on metaphase chromosomes either spontaneously or following partial inhibition of DNA synthesis and have been well identified. So far, no plant chromosome fragile sites similar to those in human chromosomes have been reported. METHODS AND RESULTS: During the course of cytological mapping of rDNA on ryegrass chromosomes, we found that the number of chromosomes plus chromosome fragments was often more than the expected 14 in most cells for Lolium perenne L. cv. Player by close cytological examination using a routine chromosome preparation procedure. Further fluorescent in situ hybridization (FISH) using 45S rDNA as a probe indicated that the root-tip cells having more than a 14-chromosome plus chromosome fragment count were a result of chromosome breakage or gap formation in vitro (referred to as chromosome lesions) at 45S rDNA sites, and 86% of the cells exhibited chromosome breaks or gaps and all occurred at the sites of 45S rDNA in Lolium perenne L. cv. Player, as well as in L. multiflorum Lam. cv. Top One. Chromatin depletion or decondensation occurred at various locations within the 45S rDNA regions, suggesting heterogeneity of lesions of 45S rDNA sites with respect to their position within the rDNA region. CONCLUSIONS: The chromosome lesions observed in this study are very similar cytologically to that of fragile sites observed in human chromosomes, and thus we conclude that the high frequency of chromosome lesions in vitro in Lolium species is the result of the expression of 45S rDNA fragile sites. Possible causes for the spontaneous expression of fragile sites and their potential biological significance are discussed

    The Nutritional Induction of COUP-TFII Gene Expression in Ventromedial Hypothalamic Neurons Is Mediated by the Melanocortin Pathway

    Get PDF
    BACKGROUND: The nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an important coordinator of glucose homeostasis. We report, for the first time, a unique differential regulation of its expression by the nutritional status in the mouse hypothalamus compared to peripheral tissues. METHODOLOGY/PRINCIPAL FINDINGS: Using hyperinsulinemic-euglycemic clamps and insulinopenic mice, we show that insulin upregulates its expression in the hypothalamus. Immunofluorescence studies demonstrate that COUP-TFII gene expression is restricted to a subpopulation of ventromedial hypothalamic neurons expressing the melanocortin receptor. In GT1-7 hypothalamic cells, the MC4-R agonist MTII leads to a dose dependant increase of COUP-TFII gene expression secondarily to a local increase in cAMP concentrations. Transfection experiments, using a COUP-TFII promoter containing a functional cAMP responsive element, suggest a direct transcriptional activation by cAMP. Finally, we show that the fed state or intracerebroventricular injections of MTII in mice induce an increased hypothalamic COUP-TFII expression associated with a decreased hepatic and pancreatic COUP-TFII expression. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that hypothalamic COUP-TFII gene expression could be a central integrator of insulin and melanocortin signaling pathway within the ventromedial hypothalamus. COUP-TFII could play a crucial role in brain integration of circulating signal of hunger and satiety involved in energy balance regulation

    Isolation of chromosome-21-specific DNA probes and their use in the analysis of nondisjunction in Down syndrome

    Full text link
    Thirteen single-copy, chromosome-21-specific DNA probes were isolated from a recombinant library made from flow-sorted chromosome 21 DNA and regionally mapped using a panel of somatic cell hybrids. Five probes mapped in the 21q21-q22.1 region, six to the 21q22.1-qter region, and one to each of the regions 21q22.1-q22.2 and 21q22.3. Two of these probes, one of which maps in the critical region for Down syndrome, have recently been shown to be expressed at high levels in Down syndrome brain tissue (Stefani et al. 1988). Following preliminary screening for restriction fragment lenght polymorphisms (RFLPs), five polymorphisms were discovered with four of the chromosome 21 DNA probes. A frequent Msp I polymorphism detected by one of the probes was used in conjunction with four previously described polymorphic chromosome 21 probes to analyse the origin of nondisjunction in 33 families with a child or fetus with trisomy 21. The parental origin of the additional chromosome 21 was determined in 12 cases: in 9 (75%) of these it was derived from the mother and in the other 3 cases (25%) it was of paternal origin. Cytogenetic analysis of Q-banding heteromorphisms was informative in three of five families tested, and in each case the RFLP results were confirmed. The meiotic stage of nondisjunction was defined with confidence in five families, the results being obtained with pericentromeric RFLP or cytogenetic markers. Recombination between two nondisjoined chromosomes was demonstrated in one family and is consistent with the view that a lack of recombination between chromosome 21 homologues or failure of their conjunction is not the invariable cause of trisomy 21.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47624/1/439_2004_Article_BF00293885.pd
    • …
    corecore