1,170 research outputs found
Recommended from our members
The translational potential of sleep and circadian rhythm disturbances as a biomarker of Alzheimer's disease
Central Neuroplasticity and Decreased Heart Rate Variability after Particulate Matter Exposure in Mice
BackgroundEpidemiologic studies show that exposure to fine particulate matter [aerodynamic diameter < or = 2.5 microm (PM(2.5))] increases the total daily cardiovascular mortality. Impaired cardiac autonomic function, which manifests as reduced heart rate variability (HRV), may be one of the underlying causes. However, the cellular mechanism(s) by which PM(2.5) exposure induces decreased HRV is not known.ObjectivesWe tested the hypothesis that exposure to PM(2.5) impairs HRV by decreasing the excitability of the cardiac vagal neurons in the nucleus ambiguus. We also determined the effect of iron on PM-exposure-induced decrease in HRV.MethodsWe measured 24-hr HRV in time domains from electrocardiogram telemetry recordings obtained in conscious, freely moving mice after 3 days of exposure to PM(2.5) in the form of soot only or iron-soot. In parallel studies, we determined the intrinsic properties of identified cardiac vagal neurons, retrogradely labeled with a fluorescent dye applied to the sinoatrial node.ResultsSoot-only exposure decreased short-term HRV (root mean square of successive difference). With the addition of iron, all HRV parameters were significantly reduced. In nonexposed mice, vagal blockade significantly reduced all HRV parameters, suggesting that HRV is, in part, under vagal regulation in mice. Iron-soot exposure had no significant effect on resting membrane potential but decreased spiking responses of the identified cardiac vagal neurons to depolarizations (p < 0.05). The decreased spiking response was accompanied with a higher minimal depolarizing current required to evoke spikes and a lower peak discharge frequency.ConclusionsThe data suggest that PM-induced neuroplasticity of cardiac vagal neurons may be one mechanism contributing to the cardiovascular consequences associated with PM(2.5) exposure seen in humans
Logics for Rough Concept Analysis
Taking an algebraic perspective on the basic structures of Rough Concept
Analysis as the starting point, in this paper we introduce some varieties of
lattices expanded with normal modal operators which can be regarded as the
natural rough algebra counterparts of certain subclasses of rough formal
contexts, and introduce proper display calculi for the logics associated with
these varieties which are sound, complete, conservative and with uniform cut
elimination and subformula property. These calculi modularly extend the
multi-type calculi for rough algebras to a `nondistributive' (i.e. general
lattice-based) setting
Internet-based search of randomised trials relevant to mental health originating in the Arab world
BACKGROUND:
The internet is becoming a widely used source of accessing medical research through various on-line databases. This instant access to information is of benefit to busy clinicians and service users around the world. The population of the Arab World is comparable to that of the United States, yet it is widely believed to have a greatly contrasting output of randomised controlled trials related to mental health. This study was designed to investigate the existence of such research in the Arab World and also to investigate the availability of this research on-line.
METHODS:
Survey of findings from three internet-based potential sources of randomised trials originating from the Arab world and relevant to mental health care.
RESULTS:
A manual search of an Arabic online current contents service identified 3 studies, MEDLINE, EMBASE, and PsycINFO searches identified only 1 study, and a manual search of a specifically indexed, study-based mental health database, PsiTri, revealed 27 trials.
CONCLUSION:
There genuinely seem to be few trials from the Arab world and accessing these on-line was problematic. Replication of some studies that guide psychiatric/psychological practice in the Arab world would seem prudent
Mini-laparoscopic versus laparoscopic approach to appendectomy
BACKGROUND: The purpose of this clinical study is to evaluate the feasibility of using 2-mm laparoscopic instruments to perform an appendectomy in patients with clinically suspected acute appendicitis and compare the outcome of this mini-laparoscopic or "needlescopic" approach to the conventional laparoscopic appendectomy. METHODS: Two groups of patients undergoing appendectomy over 24 months were studied. In the first group, needlescopic appendectomy was performed in 15 patients by surgeons specializing in advanced laparoscopy. These patients were compared with the second or control group that included 21 consecutive patients who underwent laparoscopic appendectomy. We compared the patients' demographic data, operative findings, complications, postoperative pain medicine requirements, length of hospital stay, and recovery variables. Differences were considered statistically significant at a p-value < 0.05. RESULTS: Patient demographics, history of previous abdominal surgery, and operative findings were similar in both groups. There was no conversion to open appendectomy in either group. No postoperative morbidity or mortality occurred in either group. The needlescopic group had a significantly shorter mean operative time (p = 0.02), reduced postoperative narcotics requirements (p = 0.05), shorter hospital stay (p = 0.04), and quicker return to work (p = 0.03) when compared with the laparoscopic group. CONCLUSIONS: We conclude that the needlescopic technique is a safe and effective approach to appendectomy. When performed by experienced laparoscopic surgeons, the needlescopic technique results in significantly shorter postoperative convalescence and a prompt recovery
Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products
BACKGROUND: To utilize the power of high-throughput sequencers, target enrichment methods have been developed. The majority of these require reagents and equipment that are only available from commercial vendors and are not suitable for the targets that are a few kilobases in length. METHODOLOGY/PRINCIPAL FINDINGS: We describe a novel and economical method in which custom made long-range PCR products are used to capture complete human mitochondrial genomes from complex DNA mixtures. We use the method to capture 46 complete mitochondrial genomes in parallel and we sequence them on a single lane of an Illumina GA(II) instrument. CONCLUSIONS/SIGNIFICANCE: This method is economical and simple and particularly suitable for targets that can be amplified by PCR and do not contain highly repetitive sequences such as mtDNA. It has applications in population genetics and forensics, as well as studies of ancient DNA
The Milky Way Tomography With SDSS. III. Stellar Kinematics
We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.NSF AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164NASA NAG5-13057, NAG5-13147, NNXO-8AH83GPhysics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationMarie Curie Research Training Network ELSA (European Leadership in Space Astrometry) MRTN-CT-2006-033481Fermi Research Alliance, LLC, United States Department of Energy DE-AC02-07CH11359Alfred P. Sloan FoundationParticipating InstitutionsJapanese MonbukagakushoMax Planck SocietyHigher Education Funding Council for EnglandMcDonald Observator
Evidence for Time-of-Day Dependent Effect of Neurotoxic Dorsomedial Hypothalamic Lesions on Food Anticipatory Circadian Rhythms in Rats
The dorsomedial hypothalamus (DMH) is a site of circadian clock gene and immediate early gene expression inducible by daytime restricted feeding schedules that entrain food anticipatory circadian rhythms in rats and mice. The role of the DMH in the expression of anticipatory rhythms has been evaluated using different lesion methods. Partial lesions created with the neurotoxin ibotenic acid (IBO) have been reported to attenuate food anticipatory rhythms, while complete lesions made with radiofrequency current leave anticipatory rhythms largely intact. We tested a hypothesis that the DMH and fibers of passage spared by IBO lesions play a time-of-day dependent role in the expression of food anticipatory rhythms. Rats received intra-DMH microinjections of IBO and activity and body temperature (Tb) rhythms were recorded by telemetry during ad-lib food access, total food deprivation and scheduled feeding, with food provided for 4-h/day for 20 days in the middle of the light period and then for 20 days late in the dark period. During ad-lib food access, rats with DMH lesions exhibited a lower amplitude and mean level of light-dark entrained activity and Tb rhythms. During the daytime feeding schedule, all rats exhibited food anticipatory activity and Tb rhythms that persisted during 2 days without food in constant dark. In some rats with partial or total DMH ablation, the magnitude of the anticipatory rhythm was weak relative to most intact rats. When mealtime was shifted to the late night, the magnitude of the food anticipatory activity rhythms in these cases was restored to levels characteristic of intact rats. These results confirm that rats can anticipate scheduled daytime or nighttime meals without the DMH. Improved anticipation at night suggests a modulatory role for the DMH in the expression of food anticipatory activity rhythms during the daily light period, when nocturnal rodents normally sleep
Characteristics of transposable element exonization within human and mouse
Insertion of transposed elements within mammalian genes is thought to be an
important contributor to mammalian evolution and speciation. Insertion of
transposed elements into introns can lead to their activation as alternatively
spliced cassette exons, an event called exonization. Elucidation of the
evolutionary constraints that have shaped fixation of transposed elements
within human and mouse protein coding genes and subsequent exonization is
important for understanding of how the exonization process has affected
transcriptome and proteome complexities. Here we show that exonization of
transposed elements is biased towards the beginning of the coding sequence in
both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs)
revealed that exonization of transposed elements can be population-specific,
implying that exonizations may enhance divergence and lead to speciation. SNP
density analysis revealed differences between Alu and other transposed
elements. Finally, we identified cases of primate-specific Alu elements that
depend on RNA editing for their exonization. These results shed light on TE
fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure
Identifying hypothetical genetic influences on complex disease phenotypes
<p>Abstract</p> <p>Background</p> <p>Statistical interactions between disease-associated loci of complex genetic diseases suggest that genes from these regions are involved in a common mechanism impacting, or impacted by, the disease. The computational problem we address is to discover relationships among genes from these interacting regions that may explain the observed statistical interaction and the role of these genes in the disease phenotype.</p> <p>Results</p> <p>We describe a heuristic algorithm for generating hypothetical gene relationships from loci associated with a complex disease phenotype. This approach, called Prioritizing Disease Genes by Analysis of Common Elements (PDG-ACE), mines biomedical keywords from text descriptions of genes and uses them to relate genes close to disease-associated loci. A keyword common to, and significantly over-represented in, a pair of gene descriptions may represent a preliminary hypothesis about the biological relationship between the genes, and suggest the role the genes play in the disease phenotype.</p> <p>Conclusion</p> <p>Our experimentation shows that the approach finds previously published relationships, while failing to find relationships that don't exist. The results also indicate that the approach is robust to differences in keyword vocabulary. We outline a brief case study in which results from a recently published Type 2 Diabetes association study are used to identify potential hypotheses.</p
- …