87 research outputs found

    A genome-wide association study on hematopoietic stem cell transplantation reveals novel genomic loci associated with transplant outcomes

    Get PDF
    Copyright \ua9 2024 Rosenberger, Crossland, Dressel, Kube, Wolff, Wulf, Bickeb\uf6ller, Dickinson and Holler.Introduction: Data on genomic susceptibility for adverse outcomes after hematopoietic stem cell transplantation (HSCT) for recipients are scarce. Methods: We performed a genome wide association study (GWAS) to identify genes associated with survival/mortality, relapse, and severe graft-versus-host disease (sGvHD), fitting proportional hazard and subdistributional models to data of n=1,392 recipients of European ancestry from three centres. Results: The single nucleotide polymorphism (SNP) rs17154454, intronic to the neuronal growth guidant semaphorin 3C gene (SEMA3C), was genome-wide significantly associated with event-free survival (p=7.0x10-8) and sGvHD (p=7.5x10-8). Further associations were detected for SNPs in the Paxillin gene (PXN) with death without prior relapse or sGvHD, as well as for SNPs of the Plasmacytoma Variant Translocation 1 gene (PVT1, a long non-coding RNA gene), the Melanocortin 5 Receptor (MC5R) gene and the WW Domain Containing Oxidoreductase gene (WWOX), all associated with the occurrence of sGvHD. Functional considerations support the observed associations. Discussion: Thus, new genes were identified, potentially influencing the outcome of HSCT

    Functional and Molecular Analysis of Human Osteoarthritic Chondrocytes Treated with Bone Marrow-Derived MSC-EVs

    Get PDF
    \ua9 2024 by the authors.Osteoarthritis (OA) is a degenerative joint disease, causing impaired mobility. There are currently no effective therapies other than palliative treatment. Mesenchymal stromal cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) have shown promise in attenuating OA progression, promoting chondral regeneration, and modulating joint inflammation. However, the precise molecular mechanism of action driving their beneficial effects has not been fully elucidated. In this study, we analyzed MSC-EV-treated human OA chondrocytes (OACs) to assess viability, proliferation, migration, cytokine and catabolic protein expression, and microRNA and mRNA profiles. We observed that MSC-EV-treated OACs displayed increased metabolic activity, proliferation, and migration compared to the controls. They produced decreased proinflammatory (Il-8 and IFN-γ) and increased anti-inflammatory (IL-13) cytokines, and lower levels of MMP13 protein coupled with reduced expression of MMP13 mRNA, as well as negative microRNA regulators of chondrogenesis (miR-145-5p and miR-21-5p). In 3D models, MSC-EV-treated OACs exhibited enhanced chondrogenesis-promoting features (elevated sGAG, ACAN, and aggrecan). MSC-EV treatment also reversed the pathological impact of IL-1β on chondrogenic gene expression and extracellular matrix component (ECM) production. Finally, MSC-EV-treated OACs demonstrated the enhanced expression of genes associated with cartilage function, collagen biosynthesis, and ECM organization and exhibited a signature of 24 differentially expressed microRNAs, associated with chondrogenesis-associated pathways and ECM interactions. In conclusion, our data provide new insights on the potential mechanism of action of MSC-EVs as a treatment option for early-stage OA, including transcriptomic analysis of MSC-EV-treated OA, which may pave the way for more targeted novel therapeutics

    Tissue-specific expression Patterns of Microrna during acute graft-versus-host Disease in the rat

    Get PDF
    MicroRNAs (miRNA) have emerged as central regulators of diverse biological processes and contribute to driving pathology in several diseases. Acute graft-versus-host disease (aGvHD) represents a major complication after allogeneic hematopoietic stem cell transplantation, caused by alloreactive donor T cells attacking host tissues leading to inflammation and tissue destruction. Changes in miRNA expression patterns occur during aGvHD, and we hypothesized that we could identify miRNA signatures in target tissues of aGvHD that may potentially help understand the underlying molecular pathology of the disease. We utilized a rat model of aGvHD with transplantation of fully MHC-mismatched T cell depleted bone marrow, followed by infusion of donor T cells. The expression pattern of 423 rat miRNAs was investigated in skin, gut, and lung tissues and intestinal T cells with the NanoString hybridization platform, in combination with validation by quantitative PCR. MHC-matched transplanted rats were included as controls. In the skin, upregulation of miR-34b and downregulation of miR-326 was observed, while in the intestines, we detected downregulation of miR-743b and a trend toward downregulation of miR-345-5p. Thus, tissue-specific expression patterns of miRNAs were observed. Neither miR-326 nor miR-743b has previously been associated with aGvHD. Moreover, we identified upregulation of miR-146a and miR-155 in skin tissue of rats suffering from aGvHD. Analysis of intestinal T cells indicated 23 miRNAs differentially regulated between aGvHD and controls. Two of these miRNAs were differentially expressed either in skin (miR-326) or in intestinal (miR-345-5p) tissue. Comparison of intestinal and peripheral blood T cells indicated common dysregulated expression of miR-99a, miR-223, miR-326, and miR-345-5p. Analysis of predicted gene targets for these miRNAs indicated potential targeting of an inflammatory network both in skin and in the intestines that may further regulate inflammatory cytokine production. In conclusion, comprehensive miRNA profiling in rats suffering from aGvHD demonstrate tissue-specific differences in the expression patterns of miRNA that may not be detected by profiling of peripheral blood T cells alone. These tissue-specific miRNAs may contribute to distinct pathologic mechanisms and could represent potential targets for therapy

    Donor genetic determinant of thymopoiesis, rs2204985, and stem cell transplantation outcome in a multipopulation cohort

    Get PDF
    \ua9 2024 The Author(s)Background: A genetic polymorphism, rs2204985, has been reported to be associated with the diversity of T-cell antigen receptor repertoire and TREC levels, reflecting the function of the thymus. As the thymus function can be assumed to be an important factor regulating the outcome of stem cell transplantation (SCT), it was of great interest that rs2204985 showed a genetic association to disease-free and overall survival in a German SCT donor cohort. Tools to predict the outcome of SCT more accurately would help in risk assessment and patient safety. Objective: To evaluate the general validity of the original genetic association found in the German cohort, we determined genetic associations between rs2204985 and the outcome of SCT in 1,473 SCT donors from four different populations. Study design: Genetic associations between rs2204985 genotype AA versus AG/GG and overall survival (OS) and disease-free survival (DFS) in 1,473 adult, allogeneic SCT from Finland, the United Kingdom, Spain, and Poland were performed using the Kaplan-Meier analysis and log-rank tests. We adjusted the survival models with covariates using Cox regression. Results: In unrelated SCT donors (N = 425), the OS of genotype AA versus AG/GG had a trend for a similar association (p = 0.049, log-rank test) as previously reported in the German cohort. The trend did not remain significant in the Cox regression analysis with covariates. No other associations were found. Conclusion: Weak support for the genetic association between rs2204985, previously also associated with thymus function, and the outcome of SCT could be found in a cohort from four populations

    Unintended Consequences of Incentive Provision for Behaviour Change and Maintenance around Childbirth

    Get PDF
    Financial (positive or negative) and non-financial incentives or rewards are increasingly used in attempts to influence health behaviours. While unintended consequences of incentive provision are discussed in the literature, evidence syntheses did not identify any primary research with the aim of investigating unintended consequences of incentive interventions for lifestyle behaviour change. Our objective was to investigate perceived positive and negative unintended consequences of incentive provision for a shortlist of seven promising incentive strategies for smoking cessation in pregnancy and breastfeeding. A multi-disciplinary, mixed-methods approach included involving two service-user mother and baby groups from disadvantaged areas with experience of the target behaviours as study co-investigators. Systematic reviews informed the shortlist of incentive strategies. Qualitative semi-structured interviews and a web-based survey of health professionals asked open questions on positive and negative consequences of incentives. The participants from three UK regions were a diverse sample with and without direct experience of incentive interventions: 88 pregnant women/recent mothers/partners/family members; 53 service providers; 24 experts/decision makers and interactive discussions with 63 conference attendees. Maternity and early years health professionals (n = 497) including doctors, midwives, health visitors, public health and related staff participated in the survey. Qualitative analysis identified ethical, political, cultural, social and psychological implications of incentive delivery at population and individual levels. Four key themes emerged: how incentives can address or create inequalities; enhance or diminish intrinsic motivation and wellbeing; have a positive or negative effect on relationships with others within personal networks or health providers; and can impact on health systems and resources by raising awareness and directing service delivery, but may be detrimental to other health care areas. Financial incentives are controversial and generated emotive and oppositional responses. The planning, design and delivery of future incentive interventions should evaluate unexpected consequences to inform the evidence for effectiveness, cost-effectiveness and future implementation

    Genomic abnormalities of TP53 define distinct risk groups of paediatric B-cell non-Hodgkin lymphoma

    Get PDF
    Funder: RCUK | Medical Research Council (MRC); doi: https://doi.org/10.13039/501100000265Funder: Good Will CauseFunder: MRC/EPSRC Newcastle Pathology NodeFunder: Newcastle upon Tyne Hospitals NHS Foundation Trust (Newcastle upon Tyne Hospitals NHS Trust); doi: https://doi.org/10.13039/501100003776Funder: Blood Cancer UK - Senior Bennett Fellowship #12005 North East Promenaders Against Cancer (NEPAC) The Little Princess Trust JGW Patterson FoundationAbstract: Children with B-cell non-Hodgkin lymphoma (B-NHL) have an excellent chance of survival, however, current clinical risk stratification places as many as half of patients in a high-risk group receiving very intensive chemo-immunotherapy. TP53 alterations are associated with adverse outcome in many malignancies; however, whilst common in paediatric B-NHL, their utility as a risk classifier is unknown. We evaluated the clinical significance of TP53 abnormalities (mutations, deletion and/or copy number neutral loss of heterozygosity) in a large UK paediatric B-NHL cohort and determined their impact on survival. TP53 abnormalities were present in 54.7% of cases and were independently associated with a significantly inferior survival compared to those without a TP53 abnormality (PFS 70.0% vs 100%, p < 0.001, OS 78.0% vs 100%, p = 0.002). Moreover, amongst patients clinically defined as high-risk (stage III with high LDH or stage IV), those without a TP53 abnormality have superior survival compared to those with TP53 abnormalities (PFS 100% vs 55.6%, p = 0.005, OS 100% vs 66.7%, p = 0.019). Biallelic TP53 abnormalities were either maintained from the presentation or acquired at progression in all paired diagnosis/progression Burkitt lymphoma cases. TP53 abnormalities thus define clinical risk groups within paediatric B-NHL and offer a novel molecular risk stratifier, allowing more personalised treatment protocols

    Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    Get PDF
    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification

    Learning, evolvability and exploratory behaviour: extending the evolutionary reach of learning

    Get PDF
    Traditional accounts of the role of learning in evolution have concentrated upon its capacity as a source of fitness to individuals. In this paper I use a case study from invasive species biology—the role of conditioned taste aversion in mitigating the impact of cane toads on the native species of Northern Australia—to highlight a role for learning beyond this—as a source of evolvability to populations. This has two benefits. First, it highlights an otherwise under-appreciated role for learning in evolution that does not rely on social learning as an inheritance channel nor “special” evolutionary processes such as genetic accommodation (both of which many are skeptical about). Second, and more significantly, it makes clear important and interesting parallels between learning and exploratory behaviour in development. These parallels motivate the applicability of results from existing research into learning and learning evolution to our understanding the evolution of evolvability more generally.23 page(s

    Phylogenetic evidence for the invasion of a commercialized European Phasmarhabditis hermaphrodita lineage into North America and New Zealand

    Get PDF
    Biological control (biocontrol) as a component of pest management strategies reduces reliance on synthetic chemicals, and seemingly offers a natural approach that minimizes environmental impact. However, introducing a new organism to new environments as a classical biocontrol agent can have broad and unanticipated biodiversity effects and conservation consequences. Nematodes are currently used in a variety of commercial biocontrol applications, including the use of Phasmarhabditis hermaphrodita as an agent targeting pest slug and snail species. This species was originally discovered in Germany, and is generally thought to have European origins. P. hermaphrodita is sold under the trade name NemaslugÂŽ, and is available only in European markets. However, this nematode species was discovered in New Zealand and the western United States, though its specific origins remained unclear. In this study, we analyzed 45 nematode strains representing eight different Phasmarhabditis species, collected from nine countries around the world. A segment of nematode mitochondrial DNA (mtDNA) was sequenced and subjected to phylogenetic analyses. Our mtDNA phylogenies were overall consistent with previous analyses based on nuclear ribosomal RNA (rRNA) loci. The recently discovered P. hermaphrodita strains in New Zealand and the United States had mtDNA haplotypes nearly identical to that of NemaslugÂŽ, and these were placed together in an intraspecific monophyletic clade with high support in maximum likelihood and Bayesian analyses. We also examined bacteria that co-cultured with the nematode strains isolated in Oregon, USA, by analyzing 16S rRNA sequences. Eight different bacterial genera were found to associate with these nematodes, though Moraxella osloensis, the bacteria species used in the NemaslugÂŽ formulation, was not detected. This study provided evidence that nematodes deriving from the NemaslugÂŽ biocontrol product have invaded countries where its use is prohibited by regulatory agencies and not commercially available

    Assessing MicroRNA Profiles from Low Concentration Extracellular Vesicle RNA Utilizing NanoString nCounter Technology

    No full text
    \ua9 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.Extracellular vesicles (EV) are rich in small RNA; however, a frequent caveat can be low abundance of EV RNA content, especially in clinical studies. NanoString MicroRNA Assays allow for multiplexed profiling of n = 800 mature microRNAs and can be applied to assess EV microRNA cargo. Here, we describe a method to adapt NanoString nCounter microRNA profiling to assess mature microRNA expression in low-concentration RNA samples, including concentrating the RNA, quantifying the RNA, and performing the NanoString protocol. Twelve samples can be assessed at one time using this method
    • …
    corecore