220 research outputs found
Gender effect on clinical features of achalasia: a prospective study
BACKGROUND: Achalasia is a well-characterized esophageal motor disorder but the rarity of the disease limits performing large studies on its demographic and clinical features. METHODS: Prospectively, 213 achalasia patients (110 men and 103 women) were enrolled in the study. The diagnosis established by clinical, radiographic, and endoscopic as well as manometry criteria. All patients underwent a pre-designed clinical evaluation before and within 6 months after the treatment. RESULTS: Solid dysphagia was the most common clinical symptom in men and women. Chest pain was the only symptom which was significantly different between two groups and was more complained by women than men (70.9% vs. 54.5% P value= 0.03). Although the occurrence of chest pain significantly reduced after treatment in both groups (P < 0.001), it was still higher among women (32% vs. 20.9% P value= 0.04). In both sexes, chest pain did not relate to the symptom duration, LES pressure and type of treatment patients received. Also no significant relation was found between chest pain and other symptoms expressed by men and women before and after treatment. Chest pain was less frequently reported by patients over 56 yrs of age in comparison to those less than 56 yrs (p < 0.05). CONCLUSION: It seems that chest pain is the distinct symptom of achalasia which is affected by sex as well as age and does not relate to the duration of illness, LESP and the type of treatment achalasia patients receive
Antimigraine medication use and associated health care costs in employed patients
Migraine is under diagnosed and suboptimally treated in the majority of patients, and also associated with decreased productivity in employees. The objective of this retrospective study is to assess the antimigraine medication use and associated resource utilization in employed patients. Patients with primary diagnosis of migraine or receiving antimigraine prescription drugs were identified from an employer-sponsored health insurance plan in 2010. Medical utilization and health care costs were determined for the year of 2010. Generalized linear regression was applied to evaluate the association between health care costs and the use of antimigraine medications by controlling covariates. Of 465 patients meeting the study criteria, nearly 30% that had migraine diagnosis were prescribed antimigraine medications, and 20% that had migraine diagnosis were not prescribed antimigraine medications. The remaining 50% were prescribed antimigraine medications but did not have migraine diagnosis. Patients with antimigraine medication prescriptions showed lower frequency of emergency department visits than those without antimigraine medication prescriptions. Regression models indicated an increase in migraine-related health care costs by 86% but decreases in all-cause medical costs and total health care costs by 42 and 26%, respectively, in the antimigraine medication use group after adjusting for covariates. Employed patients experienced inadequate pharmacotherapy for migraine treatment. After controlling for covariates, antimigraine prescription drug use was associated with lower total medical utilization and health care costs. Further studies should investigate patient self-reported care and needs to manage headache and develop effective intervention to improve patient quality of life and productivity
Effects of acotiamide on esophageal motor function and gastroesophageal reflux in healthy volunteers
Cell line-dependent variability in HIV activation employing DNMT inhibitors
Long-lived reservoirs of Human Immunodeficiency Virus (HIV) latently infected cells present the main barrier to a cure for HIV infection. Much interest has focused on identifying strategies to activate HIV, which would be used together with antiretrovirals to attack reservoirs. Several HIV activating agents, including Tumor Necrosis Factor alpha (TNFα) and other agents that activate via NF-kB are not fully effective in all latent infection models due to epigenetic restrictions, such as DNA methylation and the state of histone acetylation. DNA methyltransferases (DNMT) inhibitors like 5-aza-2'deoxycytidine (Aza-CdR) and histone deacetylase (HDAC) inhibitors like Trichostatin A (TSA) have been proposed as agents to enhance reactivation and have shown activity in model systems. However, it is not clear how the activities of DNMT and HDAC inhibitors range across different latently infected cell lines, potential models for the many different latently infected cells within an HIV patient. We determined HIV activation following treatment with TNFα, TSA and Aza-CdR across a range of well known latently infected cell lines. We assessed the activity of these compounds in four different Jurkat T cell-derived J-Lat cell lines (6.3, 8.4, 9.2 and 10.6), which have a latent HIV provirus in which GFP replaces Nef coding sequence, and ACH-2 and J1.1 (T cell-derived), and U1 (promonocyte-derived) cell lines with full-length provirus. We found that Aza-CdR plus TNFα activated HIV at least twice as well as TNFα alone for almost all J-Lat cells, as previously described, but not for J-Lat 10.6, in which TNFα plus Aza-CdR moderately decreased activation compared to TNFα alone. Surprisingly, a much greater reduction of TNFα-stimulated activation with Aza-CdR was detected for ACH-2, J1.1 and U1 cells. Reaching the highest reduction in U1 cells with a 75% reduction. Interestingly, Aza-CdR not only decreased TNFα induction of HIV expression in certain cell lines, but also decreased activation by TSA. Since DNMT inhibitors reduce the activity of provirus activators in some HIV latently infected cell lines the use of epigenetic modifying agents may need to be carefully optimized if they are to find clinical utility in therapies aimed at attacking latent HIV reservoirs
HIV-1 and recombinant gp120 affect the survival and differentiation of human vessel wall-derived mesenchymal stem cells
BAckground:HIV infection elicits the onset of a progressive immunodeficiency and also damages several other organs and tissues such as the CNS, kidney, heart, blood vessels, adipose tissue and bone. In particular, HIV infection has been related to an increased incidence of cardiovascular diseases and derangement in the structure of blood vessels in the absence of classical risk factors. The recent characterization of multipotent mesenchymal cells in the vascular wall, involved in regulating cellular homeostasis, suggests that these cells may be considered a target of HIV pathogenesis. This paper investigated the interaction between HIV-1 and vascular wall resident human mesenchymal stem cells (MSCs).
RESULTS:
MSCs were challenged with classical R5 and X4 HIV-1 laboratory strains demonstrating that these strains are able to enter and integrate their retro-transcribed proviral DNA in the host cell genome. Subsequent experiments indicated that HIV-1 strains and recombinant gp120 elicited a reliable increase in apoptosis in sub-confluent MSCs. Since vascular wall MSCs are multipotent cells that may be differentiated towards several cell lineages, we challenged HIV-1 strains and gp120 on MSCs differentiated to adipogenesis and endotheliogenesis. Our experiments showed that the adipogenesis is increased especially by upregulated PPAR\u3b3 activity whereas the endothelial differentiation induced by VEGF treatment was impaired with a downregulation of endothelial markers such as vWF, Flt-1 and KDR expression. These viral effects in MSC survival and adipogenic or endothelial differentiation were tackled by CD4 blockade suggesting an important role of CD4/gp120 interaction in this context.
CONCLUSIONS:
The HIV-related derangement of MSC survival and differentiation may suggest a direct role of HIV infection and gp120 in impaired vessel homeostasis and in genesis of vessel damage observed in HIV-infected patients
Macrophage signaling in HIV-1 infection
The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection
- …