6 research outputs found

    Testing the Use of the Water Milfoil ( Myriophyllum spicatum L.) in Laboratory Toxicity Assays

    Get PDF
    Abstract Tests aiming to determine the toxic properties of compounds discharged into aquatic systems have relied more on fish or invertebrates than on primary producers and among a number of producers; algae are the most popular test organisms. Macrophytes are important ecological elements in freshwaters and are therefore potentially key organisms for use in toxicity testing of compounds suspected of acting in primary producers. The most common macrophyte used in toxicity testing is Lemna sp., but as a floating plant, it has the limitation of being exposed to toxic compounds only through its lower leaf surface, including roots and rhizoids. Therefore, it is questionable whether tests with Lemna may accurately predict potential effects on submersed and exposed plant species, which have different routs of exposure and morphology. Few other submersed macrophytes have been tested, notably Myriophyllum. In the Iberian peninsula M. spicatum is the most common species within its genus and has been presented as a good bioaccumulator of heavy metals (Wang et al. 1996) and as being sensitive to several toxicants (e.g. Hanson et al. 2003). The aim of this study was to assess the potential of M. spicatum as a testing organism in laboratory assays, by obtaining axenic cultures of this plant and exposing them to several reference compounds to determine the sensitive endpoints

    Effects of crude oil on survival, morphology, and anatomy of two aquatic macrophytes from the Amazon floodplains

    Get PDF
    Aquatic herbaceous macrophytes grow in profusion in the Amazon fertile varzea floodplains. A large number of species occur but only a few are particularly abundant, supporting food chains, contributing substantially to carbon and nutrient cycles. Their growth and role in the ecosystem depend, among other, on its life cycles and habits, floating or semi-aquatic. Although in the last decades, petrolif-erous activity intensified in the Central Amazon region and so did oil spills, the effect of petroleum on the native aquatic plants is unknown. The present study was designed to test experimentally the survival and morpho-anatomical modifications of the free floating water hyacinth Eichhornia crassipes and the semi-aquatic grass Echinochloa polystachya to 10 different concentrations of crude oil. Higher concentrations of crude oil caused the mortality in both species; however, lethal dose (LD50) values showed that E. polystachya was more sensitive than E. crassipes. Despite the higher tolerance of E. crassipes, the inhibition of root and leaf growth as well as anatomical modifications in leaves were registered in higher concentrations. Additionally, the oil caused a reduction in leaf numbers in both species. Although mortality of the floating species was lower, it may increases over time, since important alterations in morphology and anatomy occurred. These results show that oil spills in the Amazon varzea can cause severe alterations in the aquatic flora and in the floodplain dynamics. © 2009 Springer Science+Business Media B.V

    The role and requirements of digestible dietary carbohydrates in infants and toddlers

    No full text
    corecore