284 research outputs found
Functional renormalization group with a compactly supported smooth regulator function
The functional renormalization group equation with a compactly supported
smooth (CSS) regulator function is considered. It is demonstrated that in an
appropriate limit the CSS regulator recovers the optimized one and it has
derivatives of all orders. The more generalized form of the CSS regulator is
shown to reduce to all major type of regulator functions (exponential,
power-law) in appropriate limits. The CSS regulator function is tested by
studying the critical behavior of the bosonized two-dimensional quantum
electrodynamics in the local potential approximation and the sine-Gordon scalar
theory for d<2 dimensions beyond the local potential approximation. It is shown
that a similar smoothing problem in nuclear physics has already been solved by
introducing the so called Salamon-Vertse potential which can be related to the
CSS regulator.Comment: JHEP style, 11 pages, 2 figures, proofs corrected, accepted for
publication by JHE
Phase Structure and Compactness
In order to study the influence of compactness on low-energy properties, we
compare the phase structures of the compact and non-compact two-dimensional
multi-frequency sine-Gordon models. It is shown that the high-energy scaling of
the compact and non-compact models coincides, but their low-energy behaviors
differ. The critical frequency at which the sine-Gordon model
undergoes a topological phase transition is found to be unaffected by the
compactness of the field since it is determined by high-energy scaling laws.
However, the compact two-frequency sine-Gordon model has first and second order
phase transitions determined by the low-energy scaling: we show that these are
absent in the non-compact model.Comment: 21 pages, 5 figures, minor changes, final version, accepted for
publication in JHE
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Critical literacy as a pedagogical goal in English language teaching
In this chapter, the authors provide an overview of the area of critical literacy as it pertains to second language pedagogy (curriculum and instruction). After considering the historical origins of critical literacy (from antiquity, and including in first language education), they consider how it began to penetrate the field of applied linguistics. They note the geographical and institutional spread of critical literacy practice as documented by published accounts. They then sketch the main features of L2 critical literacy practice. To do this, they acknowledge how practitioners have reported on their practices regarding classroom content and process. The authors also draw attention to the outcomes of these practices as well as challenges that practitioners have encountered in incorporating critical literacy into their second language classrooms
On the critical, morally-driven, self-reflective, agents of change and transformation: A literature review on culturally competent leadership in higher education.
Cultural competence philosophy and praxis was born out of healthcare provision in the 1980s. As such, the essence of care cannot be separated from cultural competence practice
MIQuant – Semi-Automation of Infarct Size Assessment in Models of Cardiac Ischemic Injury
BACKGROUND: The cardiac regenerative potential of newly developed therapies is traditionally evaluated in rodent models of surgically induced myocardial ischemia. A generally accepted key parameter for determining the success of the applied therapy is the infarct size. Although regarded as a gold standard method for infarct size estimation in heart ischemia, histological planimetry is time-consuming and highly variable amongst studies. The purpose of this work is to contribute towards the standardization and simplification of infarct size assessment by providing free access to a novel semi-automated software tool. The acronym MIQuant was attributed to this application. METHODOLOGY/PRINCIPAL FINDINGS: Mice were subject to permanent coronary artery ligation and the size of chronic infarcts was estimated by area and midline-length methods using manual planimetry and with MIQuant. Repeatability and reproducibility of MIQuant scores were verified. The validation showed high correlation (r(midline length) = 0.981; r(area) = 0.970 ) and agreement (Bland-Altman analysis), free from bias for midline length and negligible bias of 1.21% to 3.72% for area quantification. Further analysis demonstrated that MIQuant reduced by 4.5-fold the time spent on the analysis and, importantly, MIQuant effectiveness is independent of user proficiency. The results indicate that MIQuant can be regarded as a better alternative to manual measurement. CONCLUSIONS: We conclude that MIQuant is a reliable and an easy-to-use software for infarct size quantification. The widespread use of MIQuant will contribute towards the standardization of infarct size assessment across studies and, therefore, to the systematization of the evaluation of cardiac regenerative potential of emerging therapies
- …