1,357 research outputs found

    Yorkshire Enhanced Stop Smoking (YESS) study: a protocol for a randomised controlled trial to evaluate the effect of adding a personalised smoking cessation intervention to a lung cancer screening programme

    Get PDF
    Introduction: Integration of smoking cessation (SC) into lung cancer screening is essential to optimise clinical and cost effectiveness. The most effective way to use this ‘teachable moment’ is unclear. The Yorkshire Enhanced Stop Smoking study will measure the effectiveness of an SC service integrated within the Yorkshire Lung Screening Trial (YLST) and will test the efficacy of a personalised SC intervention, incorporating incidental findings detected on the low-dose CT scan performed as part of YLST. / Methods and analysis: Unless explicitly declined, all smokers enrolled in YLST will see an SC practitioner at baseline and receive SC support over 4 weeks comprising behavioural support, pharmacotherapy and/or a commercially available e-cigarette. Eligible smokers will be randomised (1:1 in permuted blocks of random size up to size 6) to receive either an enhanced, personalised SC support package, including CT scan images, or continued standard best practice. Anticipated recruitment is 1040 smokers (January 2019–December 2020). The primary objective is to measure 7-day point prevalent carbon monoxide (CO) validated SC after 3 months. Secondary outcomes include CO validated cessation at 4 weeks and 12 months, self-reported continuous cessation at 4 weeks, 3 months and 12 months, attempts to quit smoking and changes in psychological variables, including perceived risk of lung cancer, motivation to quit smoking tobacco, confidence and efficacy beliefs (self and response) at all follow-up points. A process evaluation will explore under which circumstances and on which groups the intervention works best, test intervention fidelity and theory test the mechanisms of intervention impact. / Ethics and dissemination: This study has been approved by the East Midlands-Derby Research Ethics Committee (18/EM/0199) and the Health Research Authority/Health and Care Research Wales. Results will be disseminated through publication in peer-reviewed scientific journals, presentation at conferences and via the YLST website. / Trial registration numbers: ISRCTN63825779, NCT03750110

    Population-Level Metrics of Trophic Structure Based on Stable Isotopes and Their Application to Invasion Ecology

    Get PDF
    Biological invasions are a significant driver of human-induced global change and many ecosystems sustain sympatric invaders. Interactions occurring among these invaders have important implications for ecosystem structure and functioning, yet they are poorly understood. Here we apply newly developed metrics derived from stable isotope data to provide quantitative measures of trophic diversity within populations or species. We then use these to test the hypothesis that sympatric invaders belonging to the same functional feeding group occupy a smaller isotopic niche than their allopatric counterparts. Two introduced, globally important, benthic omnivores, Louisiana swamp crayfish (Procambarus clarkii) and carp (Cyprinus carpio), are sympatric in Lake Naivasha, Kenya. We applied our metrics to an 8-year data set encompassing the establishment of carp in the lake. We found a strong asymmetric interaction between the two invasive populations, as indicated by inverse correlations between carp abundance and measures of crayfish trophic diversity. Lack of isotopic niche overlap between carp and crayfish in the majority of years indicated a predominantly indirect interaction. We suggest that carp-induced habitat alteration reduced the diversity of crayfish prey, resulting in a reduction in the dietary niche of crayfish. Stable isotopes provide an integrated signal of diet over space and time, offering an appropriate scale for the study of population niches, but few isotope studies have retained the often insightful information revealed by variability among individuals in isotope values. Our population metrics incorporate such variation, are robust to the vagaries of sample size and are a useful additional tool to reveal subtle dietary interactions among species. Although we have demonstrated their applicability specifically using a detailed temporal dataset of species invasion in a lake, they have a wide array of potential ecological applications

    Uptake and 4-week quit rates from an opt-out co-located smoking cessation service delivered alongside community-based low-dose computed tomography screening within the Yorkshire Lung Screening Trial.

    Get PDF
    BACKGROUND: Up to 50% of those attending for low-dose computed tomography screening for lung cancer continue to smoke and co-delivery of smoking cessation services alongside screening may maximise clinical benefit. Here we present data from an opt-out co-located smoking cessation service delivered alongside the Yorkshire Lung Screening Trial (YLST). METHODS: Eligible YLST participants were offered an immediate consultation with a smoking cessation practitioner (SCP) at their screening visit with ongoing smoking cessation support over subsequent weeks. RESULTS: Of 2150 eligible participants, 1905 (89%) accepted the offer of an SCP consultation during their initial visit, with 1609 (75%) receiving ongoing smoking cessation support over subsequent weeks. Uptake of ongoing support was not associated with age, ethnicity, deprivation or educational level in multivariable analyses, although men were less likely to engage (adjusted OR (ORadj) 0.71, 95% CI 0.56-0.89). Uptake was higher in those with higher nicotine dependency, motivation to stop smoking and self-efficacy for quitting. Overall, 323 participants self-reported quitting at 4 weeks (15.0% of the eligible population); 266 were validated by exhaled carbon monoxide (12.4%). Multivariable analyses of eligible smokers suggested 4-week quitting was more likely in men (ORadj 1.43, 95% CI 1.11-1.84), those with higher motivation to quit and previous quit attempts, while those with a stronger smoking habit in terms of cigarettes per day were less likely to quit. CONCLUSIONS: There was high uptake for co-located opt-out smoking cessation support across a wide range of participant demographics. Protected funding for integrated smoking cessation services should be considered to maximise programme equity and benefit

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    A Switch in the Control of Growth of the Wing Imaginal Disks of Manduca sexta

    Get PDF
    Background: Insulin and ecdysone are the key extrinsic regulators of growth for the wing imaginal disks of insects. In vitro tissue culture studies have shown that these two growth regulators act synergistically: either factor alone stimulates only limited growth, but together they stimulate disks to grow at a rate identical to that observed in situ. It is generally thought that insulin signaling links growth to nutrition, and that starvation stops growth because it inhibits insulin secretion. At the end of larval life feeding stops but the disks continue to grow, so at that time disk growth has become uncoupled from nutrition. We sought to determine at exactly what point in development this uncoupling occurs. Methodology: Growth and cell proliferation in the wing imaginal disks and hemolymph carbohydrate concentrations were measured at various stages in the last larval instar under experimental conditions of starvation, ligation, rescue, and hormone treatment. Principal Findings: Here we show that in the last larval instar of M. sexta, the uncoupling of nutrition and growth occurs as the larva passes the critical weight. Before this time, starvation causes a decline in hemolymph glucose and trehalose and a cessation of wing imaginal disks growth, which can be rescued by injections of trehalose. After the critical weight the trehalose response to starvation disappears, and the expression of insulin becomes decoupled from nutrition. After the critical weight the wing disks loose their sensitivity to repression by juvenile hormone, and factors from the abdomen, bu

    The consequences of reservoir host eradication on disease epidemiology in animal communities.

    Get PDF
    Non-native species have often been linked with introduction of novel pathogens that spill over into native communities, and the amplification of the prevalence of native parasites. In the case of introduced generalist pathogens, their disease epidemiology in the extant communities remains poorly understood. Here, Sphaerothecum destruens, a generalist fungal-like fish pathogen with bi-modal transmission (direct and environmental) was used to characterise the biological drivers responsible for disease emergence in temperate fish communities. A range of biotic factors relating to both the pathogen and the surrounding host communities were used in a novel susceptible-exposed-infectious-recovered (SEIR) model to test how these factors affected disease epidemiology. These included: (i) pathogen prevalence in an introduced reservoir host (Pseudorasbora parva); (ii) the impact of reservoir host eradication and its timing and (iii) the density of potential hosts in surrounding communities and their connectedness. These were modelled across 23 combinations and indicated that the spill-over of pathogen propagules via environmental transmission resulted in rapid establishment in adjacent fish communities (<1 year). Although disease dynamics were initially driven by environmental transmission in these communities, once sufficient numbers of native hosts were infected, the disease dynamics were driven by intra-species transmission. Subsequent eradication of the introduced host, irrespective of its timing (after one, two or three years), had limited impact on the long-term disease dynamics among local fish communities. These outputs reinforced the importance of rapid detection and eradication of non-native species, in particular when such species are identified as healthy reservoirs of a generalist pathogen

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore