17 research outputs found

    Going Coastal: Shared Evolutionary History between Coastal British Columbia and Southeast Alaska Wolves (Canis lupus)

    Get PDF
    Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest.By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves.We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species

    Evaluation of the Applicability of Different Age Determination Methods for Estimating Age of the Endangered African Wild Dog (Lycaon Pictus)

    Get PDF
    S1 Fig. Raw data for themanuscript. This is the raw data used in all the analysis in this manuscript.African wild dogs (Lycaon pictus) are endangered and their population continues to decline throughout their range. Given their conservation status, more research focused on their population dynamics, population growth and age specific mortality is needed and this requires reliable estimates of age and age of mortality. Various age determination methods from teeth and skull measurements have been applied in numerous studies and it is fundamental to test the validity of these methods and their applicability to different species. In this study we assessed the accuracy of estimating chronological age and age class of African wild dogs, from dental age measured by (i) counting cementum annuli (ii) pulp cavity/tooth width ratio, (iii) tooth wear (measured by tooth crown height) (iv) tooth wear (measured by tooth crown width/crown height ratio) (v) tooth weight and (vi) skull measurements (length, width and height). A sample of 29 African wild dog skulls, from opportunistically located carcasses was analysed. Linear and ordinal regression analysis was done to investigate the performance of each of the six age determination methods in predicting wild dog chronological age and age class. Counting cementum annuli was the most accurate method for estimating chronological age of wild dogs with a 79% predictive capacity, while pulp cavity/ tooth width ratio was also a reliable method with a 68% predictive capacity. Counting cementum annuli and pulp cavity/tooth width ratio were again the most accurate methods for separating wild dogs into three age classes (6±24 months; 25±60 months and > 60 months), with a McFadden's Pseudo-R2 of 0.705 and 0.412 respectively. The use of the cementum annuli method is recommended when estimating age of wild dogs since it is the most reliable method. However, its use is limited as it requires tooth extraction and shipping, is time consuming and expensive, and is not applicable to living individuals. Pulp cavity/tooth width ratio is a moderately reliable method for estimating both chronological age and age class. This method gives a balance between accuracy, cost and practicability, therefore it is recommended when precise age estimations are not paramount.This work was funded by grants awarded to RJG from National Geographic Conservation Trust, Columbus Zoo and Aquarium, Disney Worldwide Conservation Fund and The Rufford Foundation.http://www.plosone.orgam2016Companion Animal Clinical Studie

    Multivariate statistical analysis of metabolomics profiles in tissues of polar bears (Ursus maritimus) from the Southern and Western Hudson Bay subpopulations

    No full text
    Polar bears (Ursus maritimus) are apex predators of the Arctic, which exposes them to an array of natural and anthropogenic stress factors. Metabolomics analysis profiles endogenous metabolites that reflect the response of biological systems to stimuli, and the effects of multiple stressors can be assessed from an integrated perspective. A targeted, quantitative, liquid chromatography–mass spectrometry-based metabolomics platform [219 metabolites including amino acids, biogenic amines, acylcarnitines, phosphatidylcholines (PCs), sphingomyelins, hexoses (Hex), and fatty acids (FAs)] was applied to the muscle and liver of polar bears from the Southern and Western Hudson Bay (Canada) subpopulations (SHB and WHB, respectively). Multivariate statistics were then applied to establish whether bears were discriminated by sex and/or subpopulation. Five metabolites identified by variable importance projection (VIP) discriminated the hepatic profiles of SHB males and females (Hex, arginine, glutamine, one PC, one sphingomyelin), while fifteen metabolites (primarily PCs along with leucine) contrasted the livers of males from SHB and WHB. Metabolite profiles in the muscle of male and female bears could not be differentiated; however, the muscles of SHB and WHB males were discriminated primarily by PCs and FAs. Stable isotope ratios (δ13C and δ15N) were variably related to metabolites; δ13C was correlated with some VIP metabolite concentrations, particularly in comparisons of male bears from SHB and WHB, suggesting an influence of dietary differences. However, δ15N and age exhibited few, relatively weak correlations with metabolites. The metabolite profiles discriminating the sexes and subpopulations may have utility for future assessments regarding the effects of specific stressors on the physiology of Hudson Bay polar bears
    corecore