17 research outputs found
MORPHOPHYSIOLOGICAL CHARACTERISTICS OF ARABIC COFFEE
The understanding of the behavior of each cultivar under adverse climatic conditions is important in the choice of plants that best fit the region to be inserted. Due to the large number of cultivars available on the market it makes it difficult for producers to choose which material to plant. In view of the above, this study aimed to know the morphophysiological characteristics of coffee. The experimental design was in randomized blocks with 10 treatments, that is, arabic coffee varieties: Catuai IAC62; Catuai IAC99; Ouro IAC4397; Tupi RN IAC1669-13; Obatã IAC1669-20; Mundo Novo IAC379-24; Mundo Novo IAC 388-17-2; Mundo Novo SH3 Faz São José; Bourbon IACJ15 and Icatu IAC 2944-11 and with four replications totaling 40 plots, where each plot was composed of seven plants. The Mundo Novo IAC 388-17-2 coffee variety shows higher yield in the seventh year of cultivation. Variety of Bourbon IACJ15 coffee presented water use efficiency (EUW) which did not reflect in higher productivity. The Catuai V IAC99 arabica coffee variety stood out in the internal morphology of the leaves. The thickness of the adaxial and abaxial epidermis (TADE and TABE) and the CO2 assimilation rate (A) showed negative correlations with the productivity of processed coffee bags.
Keywords: Coffea arabica; plant morphology; plant physiology; varieties.ABSTRACT: The understanding of the behavior of each cultivar under adverse climatic conditions is important in the choice of plants that best fit the region to be inserted. Due to the large number of cultivars available on the market it makes it difficult for producers to choose which material to plant. In view of the above, this study aimed to know the morphophysiological characteristics of coffee. The experimental design was in randomized blocks with 10 treatments, that is, arabic coffee varieties: Catuai IAC62; Catuai IAC99; Ouro IAC4397; Tupi RN IAC1669-13; Obatã IAC1669-20; Mundo Novo IAC379-24; Mundo Novo IAC 388-17-2; Mundo Novo SH3 Faz São José; Bourbon IACJ15 and Icatu IAC 2944-11 and with four replications totaling 40 plots, where each plot was composed of seven plants. The Mundo Novo IAC 388-17-2 coffee variety shows higher yield in the seventh year of cultivation. Variety of Bourbon IACJ15 coffee presented water use efficiency (EUW) which did not reflect in higher productivity. The Catuai V IAC99 arabica coffee variety stood out in the internal morphology of the leaves. The thickness of the adaxial and abaxial epidermis (TADE and TABE) and the CO2 assimilation rate (A) showed negative correlations with the productivity of processed coffee bags.
Keywords: Coffea arabica; plant morphology; plant physiology; varieties.
Características morfofisiológicas do café arábico
RESUMO: O entendimento do comportamento de cada cultivar sob condições climáticas adversas é importante na escolha das plantas que melhor se adaptam à região a ser inserida. Devido ao grande número de cultivares disponíveis no mercado, torna-se difícil para o produtor escolher qual material plantar. Diante do exposto, este estudo teve como objetivo conhecer as características morfofisiológicas do café. O delineamento experimental foi em blocos casualizados com 10 tratamentos, ou seja, variedades de café arábico: Catuai IAC62; Catuai IAC99; Ouro IAC4397; Tupi RN IAC1669-13; Obatã IAC1669-20; Mundo Novo IAC379-24; Mundo Novo IAC 388-17-2; Mundo Novo SH3 Faz São José; Bourbon IACJ15 e Icatu IAC 2944-11 e com quatro repetições totalizando 40 parcelas, sendo cada parcela composta por sete plantas. A variedade de café Mundo Novo IAC 388-17-2 apresenta maior produtividade no sétimo ano de cultivo. A variedade de café Bourbon IACJ15 apresentou eficiência no uso de água (EUW) o que não refletiu em maior produtividade. A variedade de café arábica Catuai V IAC99 se destacou na morfologia interna das folhas. A espessura da epiderme adaxial e abaxial (TADE e TABE) e a taxa de assimilação de CO2 (A) apresentaram correlações negativas com a produtividade das sacas de café beneficiado.
Keywords: Coffea arabica; morfologia vegetal; fisiologia vegetal; variedades
DESENVOLVIMENTO INICIAL DO AMENDOINZEIRO SOB DIFERENTES DENSIDADES DE MATOCOMPETIÇÃO COM Urochloa
Gramíneas e leguminosas competem nos sistemas produtivos, sendo que esta competição depende de suas habilidades específicas para a sua sobrevivência. O objetivo desse trabalho foi avaliar o desenvolvimento inicial de amendoinzeiro sob diferentes densidades de matocompetição com Urochloa. Foi realizado um experimento com delineamento inteiramente casualizado, em esquema fatorial 4 x 5. O primeiro fator foi composto por quatro tipos de gramíneas, ou seja, Urochloa brizantha cv. Paiaguás, Marandu, Piatã e Urochloa ruziziensis; o segundo, por cinco densidades de matocompetição e cinco repetições, totalizando 100 parcelas ou vasos. Após 30 dias da semeadura, foram determinados os seguintes parâmetros: ISPADA – índice spad do amendoim; CEA – condutância estomática do amendoim; DCA – diâmetro de caule do amendoim; APA e APG – altura de planta do amendoim e gramínea; MSPAA e MSPAG – massa seca da parte aérea do amendoim e gramínea; e MSRA e MSRG – massa seca de raiz do amendoim e gramínea. O amendoinzeiro responde de maneira negativa quando submetido a altas densidades de matocompetição com gramíneas do gênero Urochloa. A Urochloa ruziziensis apresentou uma maior matocompetição no desenvolvimento inicial do amendoinzeiro
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Atributos químicos do solo, densidade de raiz e produtividade da cana-de-açúcar em função da aplicação de gesso agrícola
Embora o gesso agrícola seja um insumo utilizado na cultura da cana-de-açúcar, em praticamente todas as regiões produtoras do País, persistem ainda algumas dúvidas sobre os benefícios proporcionados por sua aplicação. O trabalho objetivou avaliar doses de gesso agrícola nos atributos químicos do solo, na densidade de matéria seca de raiz, na produtividade e qualidade tecnológica da cultura por duas safras consecutivas. O experimento foi instalado em Dracena, SP, com delineamento em blocos casualizados, com quatro repetições, em parcelas sub-subdivididas para atributos químicos do solo e subdivididas para densidade de matéria seca de raiz, qualidade tecnológica e produtividade, tendo como tratamentos, doses de gesso (0, 1, 2, 4 e 8 t ha-1) aplicadas após o terceiro corte da cana, períodos de avaliação (Anos agrícolas 2007/08 e 2008/09) e profundidade de amostragem (0-0,2; 0,2-0,4; 0,4-0,6; 0,6-0,8 e 0,8-1,0 m), em um Latossolo Vermelho-Amarelo distrófico, de textura média. Foram coletadas amostras de solo nas mesmas camadas, antes da instalação do experimento e depois de cada colheita. No segundo ano agrícola foi avaliada a densidade de matéria seca de raiz. As análises químicas de solo identificaram aumentos de Ca, S e saturação por bases e redução da saturação por alumínio. A aplicação do gesso agrícola promoveu a movimentação do Mg no primeiro ano agrícola, porém não foi observada a lixiviação do K. O gesso agrícola aumentou significativamente a densidade de matéria seca de raiz. Os tratamentos com doses de gesso não alteraram significativamente a ATR e produtividade da cana-de-açúcarAlthough agricultural gypsum is an input used in the sugar cane crop in practically all producing regions in the country, there are still some questions regarding the benefits provided through its application. The purpose of this study was to evaluate the effect of rates of agricultural gypsum on soil chemical attributes, on root dry matter density, and on the yield and technological quality of the crop throughout two consecutive crop seasons. The experiment was carried out in Dracena, SP with a randomized block design with four replications in split-split plots for soil chemical attributes and split plots for root dry matter density, technological quality and yield, with treatments being rates of gypsum (0, 1, 2, 4 and 8 t ha-1) applied after the third cutting of the sugar cane, periods of assessment (2007/08 and 2008/09 crop seasons) and depth of sampling (0-0.2; 0.2-0.4; 0.4-0.6; 0.6-0.8 and 0.8-1.0 m), in a Haplustox soil. Soil samples were collected at the same layers before carrying out the experiment and after each harvest. In the second crop season, the root dry matter density was assessed. Soil chemical analyses identified increases of Ca, S and base saturation, and reduction of aluminum saturation. Agricultural gypsum application led to leaching of Mg in the first crop year, however, leaching of K was not observed. Agricultural gypsum significantly increased root dry matter density. Treatments with rates of gypsum did not significantly modify the Total Recoverable Sugar (TRS) and sugar cane yiel