7,888 research outputs found
Estimation of gravitational acceleration with quantum optical interferometers
The precise estimation of the gravitational acceleration is important for
various disciplines. We consider making such an estimation using quantum
optics. A Mach-Zehnder interferometer in an "optical fountain" type arrangement
is considered and used to define a standard quantum limit for estimating the
gravitational acceleration. We use an approach based on quantum field theory on
a curved, Schwarzschild metric background to calculate the coupling between the
gravitational field and the optical signal. The analysis is extended to include
the injection of a squeezed vacuum to the Mach-Zehnder arrangement and also to
consider an active, two-mode SU(1,1) interferometer in a similar arrangement.
When detection loss is larger than , the SU(1,1) interferometer shows an
advantage over the MZ interferometer with single-mode squeezing input. The
proposed system is based on current technology and could be used to examine the
intersection of quantum theory and general relativity as well as for possible
applications.Comment: 9 pages, 5 figure
Transmission Of Optical Coherent State Qubits
We discuss the long distance transmission of qubits encoded in optical
coherent states. Through absorption these qubits suffer from two main types of
errors, the reduction of the amplitude of the coherent states and accidental
application of the Pauli Z operator. We show how these errors can be fixed
using techniques of teleportation and error correcting codes.Comment: Added two pages of explanation/background/review material to increase
readability and clarity. Corrected minor typographical and linguistic error
Generation of macroscopic superposition states with small nonlinearity
We suggest a scheme to generate a macroscopic superposition state
(Schrodinger cat state) of a free-propagating optical field using a beam
splitter, homodyne measurement and a very small Kerr nonlinear effect. Our
scheme makes it possible to considerably reduce the required nonlinear effect
to generate an optical cat state using simple and efficient optical elements.Comment: Significantly improved version, to be published in PRA as a Rapid
Communicatio
Loophole-free Bell test based on local precertification of photon's presence
A loophole-free violation of Bell inequalities is of fundamental importance
for demonstrating quantum nonlocality and long-distance device-independent
secure communication. However, transmission losses represent a fundamental
limitation for photonic loophole-free Bell tests. A local precertification of
the presence of the photons immediately before the local measurements may solve
this problem. We show that local precertification is feasible by integrating
three current technologies: (i) enhanced single-photon down-conversion to
locally create a flag photon, (ii) nanowire-based superconducting single-photon
detectors for a fast flag detection, and (iii) superconducting transition-edge
sensors to close the detection loophole. We carry out a precise space-time
analysis of the proposed scheme, showing its viability and feasibility.Comment: REVTeX4, 7 Pages, 1 figur
Exact Boson Sampling using Gaussian continuous variable measurements
BosonSampling is a quantum mechanical task involving Fock basis state
preparation and detection and evolution using only linear interactions. A
classical algorithm for producing samples from this quantum task cannot be
efficient unless the polynomial hierarchy of complexity classes collapses, a
situation believe to be highly implausible. We present method for constructing
a device which uses Fock state preparations, linear interactions and Gaussian
continuous-variable measurements for which one can show exact sampling would be
hard for a classical algorithm in the same way as Boson Sampling. The detection
events used from this arrangement does not allow a similar conclusion for the
classical hardness of approximate sampling to be drawn. We discuss the details
of this result outlining some specific properties that approximate sampling
hardness requires
The Mach-Zehnder and the Teleporter
We suggest a self-testing teleportation configuration for photon q-bits based
on a Mach-Zehnder interferometer. That is, Bob can tell how well the input
state has been teleported without knowing what that input state was. One could
imagine building a "locked" teleporter based on this configuration. The
analysis is performed for continuous variable teleportation but the arrangement
could equally be applied to discrete manipulations.Comment: 4 pages, 5 figure
Conditional Production of Superpositions of Coherent States with Inefficient Photon Detection
It is shown that a linear superposition of two macroscopically
distinguishable optical coherent states can be generated using a single photon
source and simple all-optical operations. Weak squeezing on a single photon,
beam mixing with an auxiliary coherent state, and photon detecting with
imperfect threshold detectors are enough to generate a coherent state
superposition in a free propagating optical field with a large coherent
amplitude () and high fidelity (). In contrast to all
previous schemes to generate such a state, our scheme does not need photon
number resolving measurements nor Kerr-type nonlinear interactions.
Furthermore, it is robust to detection inefficiency and exhibits some
resilience to photon production inefficiency.Comment: Some important new results added, to appear in Phys.Rev.A (Rapid
Communication
Comparison of LOQC C-sign gates with ancilla inefficiency and an improvement to functionality under these conditions
We compare three proposals for non-deterministic C-sign gates implemented
using linear optics and conditional measurements with non-ideal ancilla mode
production and detection. The simplified KLM gate [Ralph et al, Phys.Rev.A {\bf
65}, 012314 (2001)] appears to be the most resilient under these conditions. We
also find that the operation of this gate can be improved by adjusting the
beamsplitter ratios to compensate to some extent for the effects of the
imperfect ancilla.Comment: to appear in PR
Photon Sorting, Efficient Bell Measurements and a Deterministic CZ Gate using a Passive Two-level Nonlinearity
Although the strengths of optical non-linearities available experimentally
have been rapidly increasing in recent years, significant challenges remain to
using such non-linearities to produce useful quantum devices such as efficient
optical Bell state analysers or universal quantum optical gates. Here we
describe a new approach that avoids the current limitations by combining strong
non-linearities with active Gaussian operations in efficient protocols for Bell
state analysers and Controlled-Sign gates
Boson Sampling from Gaussian States
We pose a generalized Boson Sampling problem. Strong evidence exists that
such a problem becomes intractable on a classical computer as a function of the
number of Bosons. We describe a quantum optical processor that can solve this
problem efficiently based on Gaussian input states, a linear optical network
and non-adaptive photon counting measurements. All the elements required to
build such a processor currently exist. The demonstration of such a device
would provide the first empirical evidence that quantum computers can indeed
outperform classical computers and could lead to applications
- …