33 research outputs found

    Activity variations attending tungsten skarn formation, Pine Creek, California

    Full text link
    An integrated geochemical analysis of the well-exposed Pine Creek, California tungsten skarn deposit has been undertaken to evaluate changes in chemical gradients across various lithologies. Thermodynamic calculations using available experimental and thermodynamic data allow limits to be assigned to the activities of important chemical components in the metasomatic environment. Quantifiable changes in “non-volatile” component activites (CaO, MgO, Al 2 O 3 , Fe 2 O 3 , WO 3 ) and in fugacities (O 2 , F 2 ) have been traced across the system. The activities of Al 2 O 3 , Fe 2 O 3 and WO 3 generally increase from the marble (<10 2 , <10 −6 , <10 −5 respectively), through the outer skarn zone and into the massive garnet skarn (10 −1.7±0.3 , 10 −3.4±0.4 , 10 −4.8±0.1 ) While CaO and MgO activities decrease for the same traverse from 10 −5 and 10 −2.1±1 respectively, to <10 −5.7 and <10 −3 . Calculated oxygen fugacities are 10 −23.5+1.0 at T =800 K (527° C), about one log unit below QFM, and more reducing than that required by Mt-Py-Po. The high variance of the garnet-pyroxene-quartz assemblages adds sufficient uncertainty to the calculated activities for individual specimens that only the large-scale trends survive the small-scale scatter. None of the chemical variables emerge as major independent or controlling factors for the mineralogy or phase compositions. Changes in the activity of one component may be offset by compensatory changes in another resulting in an environment that, while different from Pine Creek, could still host scheelite mineralization. Mass balance calculations indicate that the exposed endoskarn cannot have supplied the necessary chemical components to convert the country rock to skarn.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47341/1/410_2004_Article_BF00381557.pd

    An integrated national scale SARS-CoV-2 genomic surveillance network

    Get PDF

    Impact of light and temperature on the uptake of algal symbionts by coral juveniles

    Get PDF
    The effects of temperature and light on the breakdown of the coral-Symbiodinium symbiosis are well documented but current understanding of their roles during initial uptake and establishment of symbiosis is limited. In this study, we investigate how temperature and light affect the uptake of the algal symbionts, ITS1 types C1 and D, by juveniles of the broadcast-spawning corals Acropora tenuis and A. millepora. Elevated temperatures had a strong negative effect on Symbiodinium uptake in both coral species, with corals at 31°C showing as little as 8% uptake compared to 87% at 28°C. Juveniles in high light treatments (390 µmol photons m⁻² s⁻¹) had lower cell counts across all temperatures, emphasizing the importance of the light environment during the initial uptake phase. The proportions of the two Symbiodinium types taken up, as quantified by a real time PCR assay using clade C- and D-specific primers, were also influenced by temperature, although variation in uptake dynamics between the two coral species indicates a host effect. At 28°C, A. tenuis juveniles were dominated by C1 Symbiodinium, and while the number of D Symbiodinium cells increased at 31°C, they never exceeded the number of C1 cells. In contrast, juveniles of A. millepora had approximately equal numbers of C1 and D cells at 28°C, but were dominated by D at 30°C and 31°C. This study highlights the significant role that environmental factors play in the establishment of coral-Symbiodinium symbiosis and provides insights into how potentially competing Symbiodinium types take up residence in coral juveniles
    corecore