10 research outputs found
Pooling/bootstrap-based GWAS (pbGWAS) identifies new loci modifying the age of onset in PSEN1 p.Glu280Ala Alzheimer\u27s disease
The literature on GWAS (genome-wide association studies) data suggests that very large sample sizes (for example, 50,000 cases and 50,000 controls) may be required to detect significant associations of genomic regions for complex disorders such as Alzheimer\u27s disease (AD). Because of the challenges of obtaining such large cohorts, we describe here a novel sequential strategy that combines pooling of DNA and bootstrapping (pbGWAS) in order to significantly increase the statistical power and exponentially reduce expenses. We applied this method to a very homogeneous sample of patients belonging to a unique and clinically well-characterized multigenerational pedigree with one of the most severe forms of early onset AD, carrying the PSEN1 p.Glu280Ala mutation (often referred to as E280A mutation), which originated as a consequence of a founder effect. In this cohort, we identified novel loci genome-wide significantly associated as modifiers of the age of onset of AD (CD44, rs187116, P=1.29 _ 10?12; NPHP1, rs10173717, P=1.74 _ 10?12; CADPS2, rs3757536, P=1.54 _ 10?10; GREM2, rs12129547, P=1.69 _ 10?13, among others) as well as other loci known to be associated with AD. Regions identified by pbGWAS were confirmed by subsequent individual genotyping. The pbGWAS methodology and the genes it targeted could provide important insights in determining the genetic causes of AD and other complex conditions
Optimal designs for generalized linear models with biased response
Optimal designs, Generalized linear model, Biased response, Exponential family,
Molecular reclassification of Crohn's disease: a cautionary note on population stratification.
Complex human diseases commonly differ in their phenotypic characteristics, e.g., Crohn's disease (CD) patients are heterogeneous with regard to disease location and disease extent. The genetic susceptibility to Crohn's disease is widely acknowledged and has been demonstrated by identification of over 100 CD associated genetic loci. However, relating CD subphenotypes to disease susceptible loci has proven to be a difficult task. In this paper we discuss the use of cluster analysis on genetic markers to identify genetic-based subgroups while taking into account possible confounding by population stratification. We show that it is highly relevant to consider the confounding nature of population stratification in order to avoid that detected clusters are strongly related to population groups instead of disease-specific groups. Therefore, we explain the use of principal components to correct for population stratification while clustering affected individuals into genetic-based subgroups. The principal components are obtained using 30 ancestry informative markers (AIM), and the first two PCs are determined to discriminate between continental origins of the affected individuals. Genotypes on 51 CD associated single nucleotide polymorphisms (SNPs) are used to perform latent class analysis, hierarchical and Partitioning Around Medoids (PAM) cluster analysis within a sample of affected individuals with and without the use of principal components to adjust for population stratification. It is seen that without correction for population stratification clusters seem to be influenced by population stratification while with correction clusters are unrelated to continental origin of individuals