18 research outputs found

    Physiological responses of Escherichia coli exposed to different heat-stress kinetics

    No full text
    International audienceThe effects of heat-stress kinetics on the viability of Escherichia coli were investigated. Cells were exposed to heat-stress treatments extending from 30 to 50 degrees C, with either a slope (40 min) or a shock (10 s), both followed by a 1-h plateau at 50 degrees C in nutritive medium. A higher survival rate was observed after the slope than after the shock, when both were followed by a plateau, so the heat slope induced a certain degree of thermotolerance. This tolerance was partly (i) linked to de novo protein synthesis during the subsequent plateau phase, and (ii) abolished after rapid cooling from 50 to 30 degrees C, which means that cellular components with rapidly reversible thermal properties are involved in this type of thermotolerance. The heat-slope-induced thermotolerance was chiefly linked to the maintenance of the plasma membrane integrity (preservation of structure, fluidity, and permeability), and not to GroEL or DnaK overexpression. Moreover, the high level of cell mortality induced by the heat shock could be related to changes in the membrane integrity
    corecore