194 research outputs found

    Shear-banding in a lyotropic lamellar phase, Part 1: Time-averaged velocity profiles

    Full text link
    Using velocity profile measurements based on dynamic light scattering and coupled to structural and rheological measurements in a Couette cell, we present evidences for a shear-banding scenario in the shear flow of the onion texture of a lyotropic lamellar phase. Time-averaged measurements clearly show the presence of structural shear-banding in the vicinity of a shear-induced transition, associated to the nucleation and growth of a highly sheared band in the flow. Our experiments also reveal the presence of slip at the walls of the Couette cell. Using a simple mechanical approach, we demonstrate that our data confirms the classical assumption of the shear-banding picture, in which the interface between bands lies at a given stress σ\sigma^\star. We also outline the presence of large temporal fluctuations of the flow field, which are the subject of the second part of this paper [Salmon {\it et al.}, submitted to Phys. Rev. E]

    An RB-EZH2 Complex Mediates Silencing of Repetitive DNA Sequences

    Get PDF
    Repetitive genomic regions include tandem sequence repeats and interspersed repeats, such as endogenous retroviruses and LINE-1 elements. Repressive heterochromatin domains silence expression of these sequences through mechanisms that remain poorly understood. Here, we present evidence that the retinoblastoma protein (pRB) utilizes a cell-cycle-independent interaction with E2F1 to recruit enhancer of zeste homolog 2 (EZH2) to diverse repeat sequences. These include simple repeats, satellites, LINEs, and endogenous retroviruses as well as transposon fragments. We generated a mutant mouse strain carrying an F832A mutation in Rb1 that is defective for recruitment to repetitive sequences. Loss of pRB-EZH2 complexes from repeats disperses H3K27me3 from these genomic locations and permits repeat expression. Consistent with maintenance of H3K27me3 at the Hox clusters, these mice are developmentally normal. However, susceptibility to lymphoma suggests that pRB-EZH2 recruitment to repetitive elements may be cancer relevant

    Measurement of the neutron magnetic form factor from inclusive quasielastic scattering of polarized electrons from polarized 3He

    Get PDF
    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized 3He target. The neutron magnetic form factor GMn has been extracted from the measured asymmetry based on recent PWIA calculations using spin-dependent spectral functions. Our determination of GMn at Q2=0.19 (GeV/c)2 agrees with the dipole parametrization. This experiment represents the first measurement of the neutron magnetic form factor using spin-dependent electron scattering

    Tests of sunspot number sequences: 1. Using ionosonde data

    Get PDF
    More than 70 years ago it was recognised that ionospheric F2-layer critical frequencies [foF2] had a strong relationship to sunspot number. Using historic datasets from the Slough and Washington ionosondes, we evaluate the best statistical fits of foF2 to sunspot numbers (at each Universal Time [UT] separately) in order to search for drifts and abrupt changes in the fit residuals over Solar Cycles 17-21. This test is carried out for the original composite of the Wolf/Zürich/International sunspot number [R], the new “backbone” group sunspot number [RBB] and the proposed “corrected sunspot number” [RC]. Polynomial fits are made both with and without allowance for the white-light facular area, which has been reported as being associated with cycle-to-cycle changes in the sunspot number - foF2 relationship. Over the interval studied here, R, RBB, and RC largely differ in their allowance for the “Waldmeier discontinuity” around 1945 (the correction factor for which for R, RBB and RC is, respectively, zero, effectively over 20 %, and explicitly 11.6 %). It is shown that for Solar Cycles 18-21, all three sunspot data sequences perform well, but that the fit residuals are lowest and most uniform for RBB. We here use foF2 for those UTs for which R, RBB, and RC all give correlations exceeding 0.99 for intervals both before and after the Waldmeier discontinuity. The error introduced by the Waldmeier discontinuity causes R to underestimate the fitted values based on the foF2 data for 1932-1945 but RBB overestimates them by almost the same factor, implying that the correction for the Waldmeier discontinuity inherent in RBB is too large by a factor of two. Fit residuals are smallest and most uniform for RC and the ionospheric data support the optimum discontinuity multiplicative correction factor derived from the independent Royal Greenwich Observatory (RGO) sunspot group data for the same interval

    Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    Get PDF
    We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets

    The roles of the formal and informal sectors in the provision of effective science education

    Get PDF
    For many years, formal school science education has been criticised by students, teachers, parents and employers throughout the world. This article presents an argument that a greater collaboration between the formal and the informal sector could address some of these criticisms. The causes for concern about formal science education are summarised and the major approaches being taken to address them are outlined. The contributions that the informal sector currently makes to science education are identified. It is suggested that the provision of an effective science education entails an enhanced complementarity between the two sectors. Finally, there is a brief discussion of the collaboration and communication still needed if this is to be effective

    Transverse-Longitudinal Asymmetry in the Quasielastic 3He→(e→, e′) Reaction

    Get PDF
    The transverse-longitudinal asymmetry ATL′ in 3He→(e→, e′) quasielastic scattering at momentum transfer Q2=0.14 (GeV/c)^2 has been measured to be 1.52 ± 0.55(stat) ± 0.15(syst)%. The plane wave impulse approximation (PWIA) prediction for this measurement ranges from 2.1% to 2.9%, where the variation is due to uncertainty in the initial state wave function, nucleon form factors, and off-shell prescription. The data may suggest a suppression with respect to the PWIA, which has also been observed for the unpolarized longitudinal response function

    The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes

    Get PDF
    Over 95% of all metazoan (animal) species comprise the invertebrates, but very few genomes from these organisms have been sequenced. We have, therefore, formed a Global Invertebrate Genomics Alliance (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture
    corecore