11 research outputs found
Force and Motion Generation of Molecular Motors: A Generic Description
We review the properties of biological motor proteins which move along linear
filaments that are polar and periodic. The physics of the operation of such
motors can be described by simple stochastic models which are coupled to a
chemical reaction. We analyze the essential features of force and motion
generation and discuss the general properties of single motors in the framework
of two-state models. Systems which contain large numbers of motors such as
muscles and flagella motivate the study of many interacting motors within the
framework of simple models. In this case, collective effects can lead to new
types of behaviors such as dynamic instabilities of the steady states and
oscillatory motion.Comment: 29 pages, 9 figure
Myosin subfragment-1 attachment to actin. Expected effect on equatorial reflections
The characteristic equatorial X-ray pattern from a relaxed vertebrate skeletal muscle changes when the muscle is activated. In particular, there is a simultaneous decrease in the intensity of the first reflection (I10) and increase in the intensity of the second (I11). This observed change is almost reciprocal. When compared with the predictions of computer modeling, it produces a strong argument that the intensity change is due to a redistribution of myosin heads (myosin subfragment-1 or S-1), which results from the formation and configuration changes of actin-myosin links. Computer modeling shows that different actin-S-1 configurations will give different numerical values for I10 and I11, assuming the same number of attachments. For a given configuration, the intensity changes are a nonlinear function of attachment number, so that direct scaling of force to reflection intensity may be difficult. Data from active muscle are consistent with the notion that in different states of active muscle, i.e. shortening or isometric, there are different average configurations of actin-myosin attachment and different numbers of actin-myosin links
Simultaneous Measurement of Individual ATPase and Mechanical Reactions by a Single Myosin Molecule at Work
Muscle contraction: A mechanical perspective
In this paper we present a purely mechanical analog of the conventional chemo-mechanical modeling of muscle contraction. We abandon the description of kinetics of the power stroke in terms of jump processes and instead resolve the continuous stochastic evolution on an appropriate energy landscape. In general physical terms, we replace hard spin chemical variables by soft spin variables representing mechanical snap-springs. This allows us to treat the case of small and even disappearing barriers and, more importantly, to incorporate the mechanical representation of the power stroke into the theory of Brownian ratchets. The model provides the simplest non-chemical description for the main stages of the biochemical Lymn-Taylor cycle and may be used as a basis for the artificial micro-mechanical reproduction of the muscle contraction mechanism. © 2010 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg
