772 research outputs found

    The flow behaviour of inorganic - wood fibre slurries in pressurised pipes

    Get PDF
    Understanding the flow behaviour of inorganic-wood fibre slurries is important for developing new process equipment for the cement fibreboard industry. Little is reported in the technical literature and generally slurry flow knowledge is limited to a few engineers within the industry. Pipe friction loss characteristics and the settling behaviour of inorganic-wood fibre slurries were studied and data were obtained in pressurised horizontal pipes ranging from 25 to100mm diameter at flow velocities up to 8m/s. The inorganic solids studied were cement and fine silica of size range 10 to 150 m. Solids concentrations ranged from 5-20% and fibre concentrations from 0- 2%. Wood pulp fibre suspensions at low fibre concentrations form a structured carrier medium with the ability to support fine particulate solids. Unlike fibre-free suspensions, no permanent stationary deposit formed and therefore no minimum settling velocity exists. At low flow rates particles are trapped in the fibre plug and the friction loss is above water. At high flow rates the particles are still supported but the fibres dislodged from the central plug core damp turbulence and friction losses for the cement-silica-fibre system are less than water (drag reduction). The overall flow behaviour is similar to and consistent with previous data reported for coal-fibre slurries. Fibre concentration has a significant affect on the onset of drag reduction and friction loss increases with fibre concentration as with conventional fibre suspensions. Pipe diameter has a minimal effect on the onset of drag reduction but friction loss decreases with diameter as with conventional fluids

    A modified Holzapfel-Ogden law for a residually stressed finite strain model of the human left ventricle in diastole

    Get PDF
    In this work, we introduce a modified Holzapfel-Ogden hyperelastic constitutive model for ventricular myocardium that accounts for residual stresses, and we investigate the effects of residual stresses in diastole using a magnetic resonance imaging–derived model of the human left ventricle (LV). We adopt an invariant-based constitutive modelling approach and treat the left ventricular myocardium as a non-homogeneous, fibre-reinforced, incompressible material. Because in vivo images provide the configuration of the LV in a loaded state even in diastole, an inverse analysis is used to determine the corresponding unloaded reference configuration. The residual stress in this unloaded state is estimated by two different methods. One is based on three-dimensional strain measurements in a local region of the canine LV, and the other uses the opening angle method for a cylindrical tube. We find that including residual stress in the model changes the stress distributions across the myocardium and that whereas both methods yield qualitatively similar changes, there are quantitative differences between the two approaches. Although the effects of residual stresses are relatively small in diastole, the model can be extended to explore the full impact of residual stress on LV mechanical behaviour for the whole cardiac cycle as more experimental data become available. In addition, although not considered here, residual stresses may also play a larger role in models that account for tissue growth and remodelling

    Quantum mechanical analysis of the equilateral triangle billiard: periodic orbit theory and wave packet revivals

    Full text link
    Using the fact that the energy eigenstates of the equilateral triangle infinite well (or billiard) are available in closed form, we examine the connections between the energy eigenvalue spectrum and the classical closed paths in this geometry, using both periodic orbit theory and the short-term semi-classical behavior of wave packets. We also discuss wave packet revivals and show that there are exact revivals, for all wave packets, at times given by Trev=9μa2/4πT_{rev} = 9 \mu a^2/4\hbar \pi where aa and μ\mu are the length of one side and the mass of the point particle respectively. We find additional cases of exact revivals with shorter revival times for zero-momentum wave packets initially located at special symmetry points inside the billiard. Finally, we discuss simple variations on the equilateral (60606060^{\circ}-60^{\circ}-60^{\circ}) triangle, such as the half equilateral (30609030^{\circ}-60^{\circ}-90^{\circ}) triangle and other `foldings', which have related energy spectra and revival structures.Comment: 34 pages, 9 embedded .eps figure

    Operative Treatment of Intra-Articular Distal Radius Fractures With versus Without Arthroscopy

    Get PDF
    __Background:__ In the past several years, an increase in open reduction and internal fixation (ORIF) for intra-articular distal radius fractures has been observed. This technique leads to a quicker recovery of function compared to non-operative treatment. However, some patients continue to have a painful and stiff wrist postoperatively. Arthroscopically assisted removal of intra-articular fracture haematoma and debris may improve the functional outcomes following operative treatment of intra-articular distal radius fractures. The purpose of this randomised controlled trial is to determine the difference in functional outcome, assessed with the Patient-Rated Wrist Evaluation (PRWE) score, after ORIF with and without an additional wrist arthroscopy in adult patients with displaced complete articular distal radius fractures. __Methods:__ In this multicentre trial, adult patients with a displaced complete articular distal radius fracture are randomised between ORIF with an additional wrist arthroscopy to remove fracture haematoma and debris (intervention group) and conventional fluoroscopic-assisted ORIF (control group). The primary outcome is functional outcome assessed with the PRWE score after three months. Secondary outcomes are wrist function assessed with the Disability of the Arm, Shoulder and Hand (DASH) score, postoperative pain, range of motion, grip strength, complications and cost-effectiveness. Additionally, in the intervention group, the quality of reduction, associated ligamentous injuries and cartilage damage will be assessed. A total of 50 patients will be included in this study. __Discussion:___ Although ORIF of intra-articular distal radi

    A Gravitational Aharonov-Bohm Effect, and its Connection to Parametric Oscillators and Gravitational Radiation

    Full text link
    A thought experiment is proposed to demonstrate the existence of a gravitational, vector Aharonov-Bohm effect. A connection is made between the gravitational, vector Aharonov-Bohm effect and the principle of local gauge invariance for nonrelativistic quantum matter interacting with weak gravitational fields. The compensating vector fields that are necessitated by this local gauge principle are shown to be incorporated by the DeWitt minimal coupling rule. The nonrelativistic Hamiltonian for weak, time-independent fields interacting with quantum matter is then extended to time-dependent fields, and applied to problem of the interaction of radiation with macroscopically coherent quantum systems, including the problem of gravitational radiation interacting with superconductors. But first we examine the interaction of EM radiation with superconductors in a parametric oscillator consisting of a superconducting wire placed at the center of a high Q superconducting cavity driven by pump microwaves. We find that the threshold for parametric oscillation for EM microwave generation is much lower for the separated configuration than the unseparated one, which then leads to an observable dynamical Casimir effect. We speculate that a separated parametric oscillator for generating coherent GR microwaves could also be built.Comment: 25 pages, 5 figures, YA80 conference (Chapman University, 2012

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore