24 research outputs found
Solitary magnetic perturbations at the ELM onset
Edge localised modes (ELMs) allow maintaining sufficient purity of tokamak
H-mode plasmas and thus enable stationary H-mode. On the other hand in a future
device ELMs may cause divertor power flux densities far in excess of tolerable
material limits. The size of the energy loss per ELM is determined by
saturation effects in the non-linear phase of the ELM, which at present is
hardly understood. Solitary magnetic perturbations (SMPs) are identified as
dominant features in the radial magnetic fluctuations below 100kHz. They are
typically observed close (+-0.1ms) to the onset of pedestal erosion. SMPs are
field aligned structures rotating in the electron diamagnetic drift direction
with perpendicular velocities of about 10km/s. A comparison of perpendicular
velocities suggests that the perturbation evoking SMPs is located at or inside
the separatrix. Analysis of very pronounced examples showed that the number of
peaks per toroidal turn is 1 or 2, which is clearly lower than corresponding
numbers in linear stability calculations. In combination with strong peaking of
the magnetic signals this results in a solitary appearance resembling modes
like palm tree modes, edge snakes or outer modes. This behavior has been
quantified as solitariness and correlated to main plasma parameters. SMPs may
be considered as a signature of the non-linear ELM-phase originating at the
separatrix or further inside. Thus they provide a handle to investigate the
transition from linear to non-linear ELM phase. By comparison with data from
gas puff imaging processes in the non-linear phase at or inside the separatrix
and in the scrape-off-layer (SOL) can be correlated. A connection between the
passing of an SMP and the onset of radial filament propagation has been found.
Eventually the findings related to SMPs may contribute to a future quantitative
understanding of the non-linear ELM evolution.Comment: submitted to Nuclear Fusio
Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at âs = 13 TeV with the ATLAS detector
This paper describes a measurement of the inclusive top quark pair production cross-section (ÏttÂŻ) with a data sample of 3.2 fbâ1 of protonâproton collisions at a centre-of-mass energy of âs = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electronâmuon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously ÏttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:
ÏttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb,
where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
Multimode excitation during the inter-ELM-crash periods in KSTAR H-mode plasma
Temporal and spatial modulation of the edge localized mode (ELM) structure has been observed during the inter-ELM-crash period by toroidally-separated two electron cyclotron emission imaging systems. The observed modulation is interpreted as a beat wave of two modes with adjacent toroidal mode number. An additional assumption is that each mode has to have a different poloidal rotation speed. In nonlinear simulation, the low-n mode can be driven by locking between the dominant modes. The modulation is reconstructed using beat waves not the locking of modesclose0
2D ECE measurements of type-I edge localized modes at ASDEX Upgrade
The installation of a 2D electron cyclotron emission imaging (ECEI) diagnostic on ASDEX Upgrade has provided a new means to observe the nature of edge localized modes (ELMs). For a series of ELMs in a typical type-I ELMy H-mode (with q(95) = 4.7), the 2D dynamics have been characterized. Firstly, a clear distinction between so-called 'fast' and 'slow' ELMs was found to be the occurrence of an off-mid-plane fluctuation in case of the latter. This mode has its amplitude strongest off-mid-plane and its poloidal and toroidal mode numbers are m similar to 110 and n similar to 30. Secondly, prior to the onset of the ELM's temperature collapse, a mode is observed that covers the whole ECEI-observation window. Here, the estimated poloidal and toroidal mode numbers are m similar to 75 and n similar to 20. These have been seen to increase towards the ELM crash, simultaneously with a velocity increase of the mode (in poloidal direction). Finally, filaments have been identified during the temperature collapse phase and their motion could be followed in the vertical direction. In contrast to both the off-mid-plane fluctuation and the ELM-onset mode, which only have been seen rotating in the electron diamagnetic drift direction, the first few filaments have sometimes been observed to move in the opposite direction as well
Solitary magnetic perturbations at the ELM onset
Tokamak H-mode plasmas frequently exhibit edge-localized modes (ELMs). ELMs allow maintaining sufficient plasma purity and thus enable stationary H-mode. On the other hand in a future device ELMs may cause divertor power flux densities far in excess of tolerable material limits. The size of the energy loss per ELM is determined by saturation effects in the non-linear phase of the ELM, which at present is hardly understood. ASDEX Upgrade is now equipped with a set of fast sampling diagnostics, which is well suited to investigate the chain of events around the ELM crash with appropriate temporal resolution(â©œ10 ” s). Solitary magnetic perturbations (SMPs) are identified as dominant features in the radial magnetic fluctuations below 100 kHz. They are typically observed close(±100 ” s) to the onset of pedestal erosion. SMPs are field aligned structures rotating in the electron diamagnetic drift direction with perpendicular velocities of about 10 km s â1 . A comparison of perpendicular velocities suggests that the perturbation evoking SMPs is located at or inside the separatrix. Analysis of very pronounced examples showed that the number of peaks per toroidal turn is 1 or 2, which is clearly lower than the corresponding numbers in linear stability calculations. In combination with strong peaking of the magnetic signals this results in a solitary appearance resembling modes like palm tree modes, edge snakes or outer modes. This behaviour has been quantified as solitariness and correlated with main plasma parameters. SMPs may be considered as a signature of the non-linear ELM phase originating at the separatrix or further inside. Thus they provide a handle to investigate the transition from linear to non-linear ELM phase. By comparison with data from gas puff imaging processes in the non-linear phase at or inside the separatrix and in the scrape-off layer (SOL) can be correlated. A connection between the passing of an SMP and the onset of radial filament propagation has been found. Eventually the findings related to SMPs may contribute to a future quantitative understanding of the non-linear ELM evolution