614 research outputs found
The "physical process" version of the first law and the generalized second law for charged and rotating black holes
We investigate both the ``physical process'' version of the first law and the
second law of black hole thermodynamics for charged and rotating black holes.
We begin by deriving general formulas for the first order variation in ADM mass
and angular momentum for linear perturbations off a stationary, electrovac
background in terms of the perturbed non-electromagnetic stress-energy, , and the perturbed charge current density, . Using these
formulas, we prove the "physical process version" of the first law for charged,
stationary black holes. We then investigate the generalized second law of
thermodynamics (GSL) for charged, stationary black holes for processes in which
a box containing charged matter is lowered toward the black hole and then
released (at which point the box and its contents fall into the black hole
and/or thermalize with the ``thermal atmosphere'' surrounding the black hole).
Assuming that the thermal atmosphere admits a local, thermodynamic description
with respect to observers following orbits of the horizon Killing field, and
assuming that the combined black hole/thermal atmosphere system is in a state
of maximum entropy at fixed mass, angular momentum, and charge, we show that
the total generalized entropy cannot decrease during the lowering process or in
the ``release process''. Consequently, the GSL always holds in such processes.
No entropy bounds on matter are assumed to hold in any of our arguments.Comment: 35 pages; 1 eps figur
On the massive wave equation on slowly rotating Kerr-AdS spacetimes
The massive wave equation is
studied on a fixed Kerr-anti de Sitter background
. We first prove that in the Schwarzschild case
(a=0), remains uniformly bounded on the black hole exterior provided
that , i.e. the Breitenlohner-Freedman bound holds. Our proof
is based on vectorfield multipliers and commutators: The usual energy current
arising from the timelike Killing vector field (which fails to be
non-negative pointwise) is shown to be non-negative with the help of a Hardy
inequality after integration over a spacelike slice. In addition to , we
construct a vectorfield whose energy identity captures the redshift producing
good estimates close to the horizon. The argument is finally generalized to
slowly rotating Kerr-AdS backgrounds. This is achieved by replacing the Killing
vectorfield with for an
appropriate , which is also Killing and--in contrast to the
asymptotically flat case--everywhere causal on the black hole exterior. The
separability properties of the wave equation on Kerr-AdS are not used. As a
consequence, the theorem also applies to spacetimes sufficiently close to the
Kerr-AdS spacetime, as long as they admit a causal Killing field which is
null on the horizon.Comment: 1 figure; typos corrected, references added, introduction revised; to
appear in CM
Black Hole Entropy is Noether Charge
We consider a general, classical theory of gravity in dimensions, arising
from a diffeomorphism invariant Lagrangian. In any such theory, to each vector
field, , on spacetime one can associate a local symmetry and, hence, a
Noether current -form, , and (for solutions to the field
equations) a Noether charge -form, . Assuming only that the
theory admits stationary black hole solutions with a bifurcate Killing horizon,
and that the canonical mass and angular momentum of solutions are well defined
at infinity, we show that the first law of black hole mechanics always holds
for perturbations to nearby stationary black hole solutions. The quantity
playing the role of black hole entropy in this formula is simply times
the integral over of the Noether charge -form associated with
the horizon Killing field, normalized so as to have unit surface gravity.
Furthermore, we show that this black hole entropy always is given by a local
geometrical expression on the horizon of the black hole. We thereby obtain a
natural candidate for the entropy of a dynamical black hole in a general theory
of gravity. Our results show that the validity of the ``second law" of black
hole mechanics in dynamical evolution from an initially stationary black hole
to a final stationary state is equivalent to the positivity of a total Noether
flux, and thus may be intimately related to the positive energy properties of
the theory. The relationship between the derivation of our formula for black
hole entropy and the derivation via ``Euclidean methods" also is explained.Comment: 16 pages, EFI 93-4
Deflection and Rotation of CMEs from Active Region 11158
Between the 13 and 16 of February 2011 a series of coronal mass ejections
(CMEs) erupted from multiple polarity inversion lines within active region
11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS)
flux rope model to determine the CME trajectory using both Solar Terrestrial
Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph
images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model
for nonradial CME dynamics driven by magnetic forces, to simulate the
deflection and rotation of the seven CMEs. We find good agreement between the
ForeCAT results and the reconstructed CME positions and orientations. The CME
deflections range in magnitude between 10 degrees and 30 degrees. All CMEs
deflect to the north but we find variations in the direction of the
longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with
both clockwise and counterclockwise rotations occurring. Three of the CMEs
begin with initial positions within 2 degrees of one another. These three CMEs
all deflect primarily northward, with some minor eastward deflection, and
rotate counterclockwise. Their final positions and orientations, however,
respectively differ by 20 degrees and 30 degrees. This variation in deflection
and rotation results from differences in the CME expansion and radial
propagation close to the Sun, as well as the CME mass. Ultimately, only one of
these seven CMEs yielded discernible in situ signatures near Earth, despite the
active region facing near Earth throughout the eruptions. We suggest that the
differences in the deflection and rotation of the CMEs can explain whether each
CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic
On the Particle Definition in the presence of Black Holes
A canonical particle definition via the diagonalisation of the Hamiltonian
for a quantum field theory in specific curved space-times is presented. Within
the provided approach radial ingoing or outgoing Minkowski particles do not
exist. An application of this formalism to the Rindler metric recovers the
well-known Unruh effect. For the situation of a black hole the Hamiltonian
splits up into two independent parts accounting for the interior and the
exterior domain, respectively. It turns out that a reasonable particle
definition may be accomplished for the outside region only. The Hamiltonian of
the field inside the black hole is unbounded from above and below and hence
possesses no ground state. The corresponding equation of motion displays a
linear global instability. Possible consequences of this instability are
discussed and its relations to the sonic analogues of black holes are
addressed. PACS-numbers: 04.70.Dy, 04.62.+v, 10.10.Ef, 03.65.Db.Comment: 44 pages, LaTeX, no figures, accepted for publication in Phys. Rev.
Applications of a New Proposal for Solving the "Problem of Time" to Some Simple Quantum Cosmological Models
We apply a recent proposal for defining states and observables in quantum
gravity to simple models. First, we consider a Klein-Gordon particle in an ex-
ternal potential in Minkowski space and compare our proposal to the theory ob-
tained by deparametrizing with respect to a time slicing prior to quantiza-
tion. We show explicitly that the dynamics of the deparametrization approach
depends on the time slicing. Our proposal yields a dynamics independent of the
choice of time slicing at intermediate times but after the potential is turned
off, the dynamics does not return to the free particle dynamics. Next we apply
our proposal to the closed Robertson-Walker quantum cosmology with a massless
scalar field with the size of the universe as our time variable, so the only
dynamical variable is the scalar field. We show that the resulting theory has
the semi-classical behavior up to the classical turning point from expansion to
contraction, i.e., given a classical solution which expands for much longer
than the Planck time, there is a quantum state whose dynamical evolution
closely approximates this classical solution during the expansion. However,
when the "time" gets larger than the classical maximum, the scalar field be-
comes "frozen" at its value at the maximum expansion. We also obtain similar
results in the Taub model. In an Appendix we derive the form of the Wheeler-
DeWitt equation for the Bianchi models by performing a proper quantum reduc-
tion of the momentum constraints; this equation differs from the usual one ob-
tained by solving the momentum constraints classically, prior to quantization.Comment: 30 pages, LaTeX 3 figures (postscript file or hard copy) available
upon request, BUTP-94/1
Assessment of atmospheric aerosols from two reanalysis products over Australia
Assessments of atmospheric aerosols from reanalysis are important for understanding uncertainty in model simulations, and ultimately predictions, such as for solar power or air quality forecasts and assessments. This study intercompares total aerosol optical depth (AOD) and dust AOD (DAOD) from two global reanalyses datasets, the European Centre for Medium-Range Weather Forecasts (ECMWF) Monitoring Atmospheric Composition and Climate (MACC) and the NASA Modern-Era Retrospective Analysis for Research-2 (MERRA-2). These are evaluated against AeroSpan (Aerosol characterisation via Sun photometry: Australian Network) ground observations which forms part of the Aerosol Robotic Network (AERONET) over the Australian continent for the 2002–2012 period. During dust storms, AeroSpan/AERONET AOD measurements were missing due to cloud screening. To overcome validation limitations in sun photometry for dust events, a nephelometer's scattering coefficient is qualitatively compared against reanalysis of DAOD at a key dust storm activation site, Tinga Tingana in South Australia (~200 km east of Lake Eyre). A specific extreme event that occurred in 2009 originating from the Lake Eyre basin, a major dust source covering one-sixth of Australia, was studied. The results show that MERRA-2 reanalysis overestimates monthly total AOD twice as much compared to AeroSpan/AERONET ground observations but seems better correlated against AeroSpan/AERONET than ECMWF/MACC. Mean data of MERRA-2 time series over 10 years provide lower DAOD values and lower dust aerosol estimates than ECMWF/MACC reanalysis (over the Lake Eyre basin with spatial averaging). Specifically at Tinga Tingana, the correlation from MERRA-2 (0.45 correlation) and ECMWF/MACC (0.43 correlation) against AeroSpan/AERONET's AOD were similar. Between MERRA-2 and ECMWF/MACC decade long daily gridded DAOD, the correlation coefficient was high at 0.73, again indicating similarity between the datasets. MERRA-2 total AOD correlation is significantly higher (by 0.26) against AeroSpan/AERONET than ECMWF/MACC. MERRA-2 also provides higher AOD values in extreme cases which may correspond to dust storms. During dust storms, a hybrid strategy using nephelometers and hourly reanalysis from MERRA-2 is able to identify dust storms better than AeroSpan/AERONET. Overall, this work can enable and inform better aerosol data assimilation into forecast models such as for solar energy, agriculture or air quality over Australia
Black Hole Evaporation in the Presence of a Short Distance Cutoff
A derivation of the Hawking effect is given which avoids reference to field
modes above some cutoff frequency in the free-fall frame
of the black hole. To avoid reference to arbitrarily high frequencies, it is
necessary to impose a boundary condition on the quantum field in a timelike
region near the horizon, rather than on a (spacelike) Cauchy surface either
outside the horizon or at early times before the horizon forms. Due to the
nature of the horizon as an infinite redshift surface, the correct boundary
condition at late times outside the horizon cannot be deduced, within the
confines of a theory that applies only below the cutoff, from initial
conditions prior to the formation of the hole. A boundary condition is
formulated which leads to the Hawking effect in a cutoff theory. It is argued
that it is possible the boundary condition is {\it not} satisfied, so that the
spectrum of black hole radiation may be significantly different from that
predicted by Hawking, even without the back-reaction near the horizon becoming
of order unity relative to the curvature.Comment: 35 pages, plain LaTeX, UMDGR93-32, NSF-ITP-93-2
The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes
Quantum fields propagating on a curved spacetime are investigated in terms of
microlocal analysis. We discuss a condition on the wave front set for the
corresponding n-point distributions, called ``microlocal spectrum condition''
(SC). On Minkowski space, this condition is satisfied as a consequence of
the usual spectrum condition. Based on Radzikowski's determination of the wave
front set of the two-point function of a free scalar field, satisfying the
Hadamard condition in the Kay and Wald sense, we construct in the second part
of this paper all Wick polynomials including the energy-momentum tensor for
this field as operator valued distributions on the manifold and prove that they
satisfy our microlocal spectrum condition.Comment: 21 pages, AMS-LaTeX, 2 figures appended as Postscript file
Geological relationships and laser ablation ICP-MS U-Pb geochronology of the Saint George Batholith, southwestern New Brunswick, Canada: implications for its tectonomagmatic evolution
The Late Silurian to Late Devonian Saint George Batholith in southwestern New Brunswick is a large composite intrusion (2000 km2) emplaced into the continental margin of the peri-Gondwanan microcontinent of Ganderia. The batholith includes: (1) Bocabec Gabbro; (2) equigranular Utopia and Wellington Lake biotite granites; (3) Welsford, Jake Lee Mountain, and Parks Brook peralkaline granites; (4) two-mica John Lee Brook Granite; (6) Jimmy Hill and Magaguadavic megacrystic granites; and (6) rapakivi Mount Douglas Granite. New LA ICP-MS in situ analyses of six samples from the Saint George Batholith are as follows: (1) U-Pb monazite crystallization age of 425.5 ± 2.1 Ma for the Utopia Granite in the western part of the batholith (2) U-Pb zircon crystallization ages of 420.4 ± 2.4 Ma and 420.0 ± 3.5 Ma for two samples of the Utopia Granite from the central part of the batholith; (3) U-Pb zircon crystallization age of 418.0 ± 2.3 Ma for the Jake Lee Mountain Granite; (4) U-Pb zircon crystallization age of 415.5 ± 2.1 Ma for the Wellington Lake Granite; and (5) U-Pb monazite crystallization age of 413.3 ± 2.1 Ma for the John Lee Brook Granite. The new geochronological together with new and existing geochemical data suggest that the protracted magmatic evolution of the Late Silurian to Early Devonian plutonic rocks is related to the transition of the Silurian Kingston arc-Mascarene backarc system from an extensional to compressional tectonic environment during collision of the Avalonian microcontinent with Laurentia followed by slab break-off.
- …