118 research outputs found
Thermal Transport Properties of Grey Cast Irons
Thermal diffusivity and thermal conductivity of grey cast iron have been measured as a function of graphite flake morphology, chemical composition, and position in a finished brake rotor. Cast iron samples used for this investigation were cut from ``step block`` castings designed to produce iron with different graphite flake morphologies resulting from different cooling rates. Samples were also machined from prototype alloys and from production brake rotors representing a variation in foundry practice. Thermal diffusivity was measured at room and elevated temperatures via the flash technique. Heat capacity of selected samples was measured with differential scanning calorimetry, and these results were used to calculate the thermal conductivity. Microstructure of the various cast iron samples was quantified by standard metallography and image analysis, and the chemical compositions were determined by optical emission spectroscopy
Approximate k-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry
Using an approximation scheme to deal with the centrifugal
(pseudo-centrifugal) term, we solve the Dirac equation with the screened
Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number
{\kappa}. Based on the spin and pseudospin symmetry, analytic bound state
energy spectrum formulas and their corresponding upper- and lower-spinor
components of two Dirac particles are obtained using a shortcut of the
Nikiforov-Uvarov method. We find a wide range of permissible values for the
spin symmetry constant C_{s} from the valence energy spectrum of particle and
also for pseudospin symmetry constant C_{ps} from the hole energy spectrum of
antiparticle. Further, we show that the present potential interaction becomes
less (more) attractive for a long (short) range screening parameter {\alpha}.
To remove the degeneracies in energy levels we consider the spin and pseudospin
solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A
few special cases such as the exact spin (pseudospin) symmetry Dirac-Yukawa,
the Yukawa plus centrifugal-like potentials, the limit when {\alpha} becomes
zero (Coulomb potential field) and the non-relativistic limit of our solution
are studied. The nonrelativistic solutions are compared with those obtained by
other methods.Comment: 21 pages, 6 figure
Axion Radiation from Strings
This paper revisits the problem of the string decay contribution to the axion
cosmological energy density. We show that this contribution is proportional to
the average relative increase when axion strings decay of a certain quantity
which we define. We carry out numerical simulations of the
evolution and decay of circular and non-circular string loops, of bent strings
with ends held fixed, and of vortex-antivortex pairs in two dimensions. In the
case of string loops and of vortex-antivortex pairs, decreases by
approximately 20%. In the case of bent strings, remains constant
or increases slightly. Our results imply that the string decay contribution to
the axion energy density is of the same order of magnitude as the
well-understood contribution from vacuum realignment.Comment: 29 pages, 10 figure
- …