806 research outputs found

    Cosmological Evolution of Global Monopoles

    Full text link
    We investigate the cosmological evolution of global monopoles in the radiation dominated (RD) and matter dominated (MD) universes by numerically solving field equations of scalar fields. It is shown that the global monopole network relaxes into the scaling regime, unlike the gauge monopole network. The number density of global monopoles is given by n(t)(0.43±0.07)/t3n(t) \simeq (0.43\pm0.07) / t^{3} during the RD era and n(t)(0.25±0.05)/t3n(t) \simeq (0.25\pm0.05) / t^{3} during the MD era. Thus, we have confirmed that density fluctuations produced by global monopoles become scale invariant and are given by δρ7.2(5.0)σ2/t2\delta \rho \sim 7.2(5.0) \sigma^{2} / t^{2} during the RD (MD) era, where σ\sigma is the breaking scale of the symmetry.Comment: 6 pages, 2 figures, to appear in Phys. Rev. D (R

    Three-dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76667/1/AIAA-2005-2175-915.pd

    Trace Complexity of Chaotic Reversible Cellular Automata

    Full text link
    Delvenne, K\r{u}rka and Blondel have defined new notions of computational complexity for arbitrary symbolic systems, and shown examples of effective systems that are computationally universal in this sense. The notion is defined in terms of the trace function of the system, and aims to capture its dynamics. We present a Devaney-chaotic reversible cellular automaton that is universal in their sense, answering a question that they explicitly left open. We also discuss some implications and limitations of the construction.Comment: 12 pages + 1 page appendix, 4 figures. Accepted to Reversible Computation 2014 (proceedings published by Springer

    Atmospheric Channel Characteristics for Quantum Communication with Continuous Polarization Variables

    Full text link
    We investigate the properties of an atmospheric channel for free space quantum communication with continuous polarization variables. In our prepare-and-measure setup, coherent polarization states are transmitted through an atmospheric quantum channel of 100m length on the roof of our institute's building. The signal states are measured by homodyne detection with the help of a local oscillator (LO) which propagates in the same spatial mode as the signal, orthogonally polarized to it. Thus the interference of signal and LO is excellent and atmospheric fluctuations are autocompensated. The LO also acts as spatial and spectral filter, which allows for unrestrained daylight operation. Important characteristics for our system are atmospheric channel influences that could cause polarization, intensity and position excess noise. Therefore we study these influences in detail. Our results indicate that the channel is suitable for our quantum communication system in most weather conditions.Comment: 6 pages, 4 figures, submitted to Applied Physics B following an invitation for the special issue "Selected Papers Presented at the 2009 Spring Meeting of the Quantum Optics and Photonics Section of the German Physical Society

    Lagrangian evolution of global strings

    Full text link
    We establish a method to trace the Lagrangian evolution of extended objects consisting of a multicomponent scalar field in terms of a numerical calculation of field equations in three dimensional Eulerian meshes. We apply our method to the cosmological evolution of global strings and evaluate the energy density, peculiar velocity, Lorentz factor, formation rate of loops, and emission rate of Nambu-Goldstone (NG) bosons. We confirm the scaling behavior with a number of long strings per horizon volume smaller than the case of local strings by a factor of \sim 10. The strategy and the method established here are applicable to a variety of fields in physics.Comment: 5 pages, 2 figure

    On the gravitational, dilatonic and axionic radiative damping of cosmic strings

    Full text link
    We study the radiation reaction on cosmic strings due to the emission of dilatonic, gravitational and axionic waves. After verifying the (on average) conservative nature of the time-symmetric self-interactions, we concentrate on the finite radiation damping force associated with the half-retarded minus half-advanced ``reactive'' fields. We revisit a recent proposal of using a ``local back reaction approximation'' for the reactive fields. Using dimensional continuation as convenient technical tool, we find, contrary to previous claims, that this proposal leads to antidamping in the case of the axionic field, and to zero (integrated) damping in the case of the gravitational field. One gets normal positive damping only in the case of the dilatonic field. We propose to use a suitably modified version of the local dilatonic radiation reaction as a substitute for the exact (non-local) gravitational radiation reaction. The incorporation of such a local approximation to gravitational radiation reaction should allow one to complete, in a computationally non-intensive way, string network simulations and to give better estimates of the amount and spectrum of gravitational radiation emitted by a cosmologically evolving network of massive strings.Comment: 48 pages, RevTex, epsfig, 1 figure; clarification of the domain of validity of the perturbative derivation of the string equations of motion, and of their renormalizabilit

    Continuous-Variable Quantum Teleportation with a Conventional Laser

    Get PDF
    We give a description of balanced homodyne detection (BHD) using a conventional laser as a local oscillator (LO), where the laser field outside the cavity is a mixed state whose phase is completely unknown. Our description is based on the standard interpretation of the quantum theory for measurement, and accords with the experimental result in the squeezed state generation scheme. We apply our description of BHD to continuous-variable quantum teleportation (CVQT) with a conventional laser to analyze the CVQT experiment [A. Furusawa et al., Science 282, 706 (1998)], whose validity has been questioned on the ground of intrinsic phase indeterminacy of the laser field [T. Rudolph and B.C. Sanders, Phys. Rev. Lett. 87, 077903 (2001)]. We show that CVQT with a laser is valid only if the unknown phase of the laser field is shared among sender's LOs, the EPR state, and receiver's LO. The CVQT experiment is considered valid with the aid of an optical path other than the EPR channel and a classical channel, directly linking between a sender and a receiver. We also propose a method to probabilistically generate a strongly phase-correlated quantum state via continuous measurement of independent lasers, which is applicable to realizing CVQT without the additional optical path.Comment: 5 pages, 2 figure

    Fermionic massive modes along cosmic strings

    Get PDF
    The influence on cosmic string dynamics of fermionic massive bound states propagating in the vortex, and getting their mass only from coupling to the string forming Higgs field, is studied. Such massive fermionic currents are numerically found to exist for a wide range of model parameters and seen to modify drastically the usual string dynamics coming from the zero mode currents alone. In particular, by means of a quantization procedure, a new equation of state describing cosmic strings with any kind of fermionic current, massive or massless, is derived and found to involve, at least, one state parameter per trapped fermion species. This equation of state exhibits transitions from subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for publication in Phys. Rev.
    corecore