806 research outputs found
Cosmological Evolution of Global Monopoles
We investigate the cosmological evolution of global monopoles in the
radiation dominated (RD) and matter dominated (MD) universes by numerically
solving field equations of scalar fields. It is shown that the global monopole
network relaxes into the scaling regime, unlike the gauge monopole network. The
number density of global monopoles is given by during the RD era and during the MD
era. Thus, we have confirmed that density fluctuations produced by global
monopoles become scale invariant and are given by during the RD (MD) era, where is the breaking
scale of the symmetry.Comment: 6 pages, 2 figures, to appear in Phys. Rev. D (R
Three-dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76667/1/AIAA-2005-2175-915.pd
Trace Complexity of Chaotic Reversible Cellular Automata
Delvenne, K\r{u}rka and Blondel have defined new notions of computational
complexity for arbitrary symbolic systems, and shown examples of effective
systems that are computationally universal in this sense. The notion is defined
in terms of the trace function of the system, and aims to capture its dynamics.
We present a Devaney-chaotic reversible cellular automaton that is universal in
their sense, answering a question that they explicitly left open. We also
discuss some implications and limitations of the construction.Comment: 12 pages + 1 page appendix, 4 figures. Accepted to Reversible
Computation 2014 (proceedings published by Springer
Atmospheric Channel Characteristics for Quantum Communication with Continuous Polarization Variables
We investigate the properties of an atmospheric channel for free space
quantum communication with continuous polarization variables. In our
prepare-and-measure setup, coherent polarization states are transmitted through
an atmospheric quantum channel of 100m length on the roof of our institute's
building. The signal states are measured by homodyne detection with the help of
a local oscillator (LO) which propagates in the same spatial mode as the
signal, orthogonally polarized to it. Thus the interference of signal and LO is
excellent and atmospheric fluctuations are autocompensated. The LO also acts as
spatial and spectral filter, which allows for unrestrained daylight operation.
Important characteristics for our system are atmospheric channel influences
that could cause polarization, intensity and position excess noise. Therefore
we study these influences in detail. Our results indicate that the channel is
suitable for our quantum communication system in most weather conditions.Comment: 6 pages, 4 figures, submitted to Applied Physics B following an
invitation for the special issue "Selected Papers Presented at the 2009
Spring Meeting of the Quantum Optics and Photonics Section of the German
Physical Society
Lagrangian evolution of global strings
We establish a method to trace the Lagrangian evolution of extended objects
consisting of a multicomponent scalar field in terms of a numerical calculation
of field equations in three dimensional Eulerian meshes. We apply our method to
the cosmological evolution of global strings and evaluate the energy density,
peculiar velocity, Lorentz factor, formation rate of loops, and emission rate
of Nambu-Goldstone (NG) bosons. We confirm the scaling behavior with a number
of long strings per horizon volume smaller than the case of local strings by a
factor of 10. The strategy and the method established here are
applicable to a variety of fields in physics.Comment: 5 pages, 2 figure
On the gravitational, dilatonic and axionic radiative damping of cosmic strings
We study the radiation reaction on cosmic strings due to the emission of
dilatonic, gravitational and axionic waves. After verifying the (on average)
conservative nature of the time-symmetric self-interactions, we concentrate on
the finite radiation damping force associated with the half-retarded minus
half-advanced ``reactive'' fields. We revisit a recent proposal of using a
``local back reaction approximation'' for the reactive fields. Using
dimensional continuation as convenient technical tool, we find, contrary to
previous claims, that this proposal leads to antidamping in the case of the
axionic field, and to zero (integrated) damping in the case of the
gravitational field. One gets normal positive damping only in the case of the
dilatonic field. We propose to use a suitably modified version of the local
dilatonic radiation reaction as a substitute for the exact (non-local)
gravitational radiation reaction. The incorporation of such a local
approximation to gravitational radiation reaction should allow one to complete,
in a computationally non-intensive way, string network simulations and to give
better estimates of the amount and spectrum of gravitational radiation emitted
by a cosmologically evolving network of massive strings.Comment: 48 pages, RevTex, epsfig, 1 figure; clarification of the domain of
validity of the perturbative derivation of the string equations of motion,
and of their renormalizabilit
Continuous-Variable Quantum Teleportation with a Conventional Laser
We give a description of balanced homodyne detection (BHD) using a
conventional laser as a local oscillator (LO), where the laser field outside
the cavity is a mixed state whose phase is completely unknown. Our description
is based on the standard interpretation of the quantum theory for measurement,
and accords with the experimental result in the squeezed state generation
scheme. We apply our description of BHD to continuous-variable quantum
teleportation (CVQT) with a conventional laser to analyze the CVQT experiment
[A. Furusawa et al., Science 282, 706 (1998)], whose validity has been
questioned on the ground of intrinsic phase indeterminacy of the laser field
[T. Rudolph and B.C. Sanders, Phys. Rev. Lett. 87, 077903 (2001)]. We show that
CVQT with a laser is valid only if the unknown phase of the laser field is
shared among sender's LOs, the EPR state, and receiver's LO. The CVQT
experiment is considered valid with the aid of an optical path other than the
EPR channel and a classical channel, directly linking between a sender and a
receiver. We also propose a method to probabilistically generate a strongly
phase-correlated quantum state via continuous measurement of independent
lasers, which is applicable to realizing CVQT without the additional optical
path.Comment: 5 pages, 2 figure
Fermionic massive modes along cosmic strings
The influence on cosmic string dynamics of fermionic massive bound states
propagating in the vortex, and getting their mass only from coupling to the
string forming Higgs field, is studied. Such massive fermionic currents are
numerically found to exist for a wide range of model parameters and seen to
modify drastically the usual string dynamics coming from the zero mode currents
alone. In particular, by means of a quantization procedure, a new equation of
state describing cosmic strings with any kind of fermionic current, massive or
massless, is derived and found to involve, at least, one state parameter per
trapped fermion species. This equation of state exhibits transitions from
subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for
publication in Phys. Rev.
- …