907 research outputs found
Colligative properties of solutions: II. Vanishing concentrations
We continue our study of colligative properties of solutions initiated in
math-ph/0407034. We focus on the situations where, in a system of linear size
, the concentration and the chemical potential scale like and
, respectively. We find that there exists a critical value \xit such
that no phase separation occurs for \xi\le\xit while, for \xi>\xit, the two
phases of the solvent coexist for an interval of values of . Moreover, phase
separation begins abruptly in the sense that a macroscopic fraction of the
system suddenly freezes (or melts) forming a crystal (or droplet) of the
complementary phase when reaches a critical value. For certain values of
system parameters, under ``frozen'' boundary conditions, phase separation also
ends abruptly in the sense that the equilibrium droplet grows continuously with
increasing and then suddenly jumps in size to subsume the entire system.
Our findings indicate that the onset of freezing-point depression is in fact a
surface phenomenon.Comment: 27 pages, 1 fig; see also math-ph/0407034 (both to appear in JSP
T and S dualities and The cosmological evolution of the dilaton and the scale factors
Cosmologically stabilizing radion along with the dilaton is one of the major
concerns of low energy string theory. One can hope that T and S dualities can
provide a plausible answer. In this work we study the impact of S and T duality
invariances on dilaton gravity. We have shown various instances where
physically interesting models arise as a result of imposing the mentioned
invariances. In particular S duality has a very privileged effect in that the
dilaton equations partially decouple from the evolution of the scale factors.
This makes it easy to understand the general rules for the stabilization of the
dilaton. We also show that certain T duality invariant actions become S duality
invariance compatible. That is they mimic S duality when extra dimensions
stabilize.Comment: Corrected a misleading interpretation of the S duality transformation
and a wrong comment on d=10. I thank A.Kaya for pointing this out to me in
time. So the new version is dealing with d=10 only. Added references and
corrected some typos. Minor re-editing. Omitted a section for elaboration in
a further study. Corrected further typo
Electrodynamic Limit in a Model for Charged Solitons
We consider a model of topological solitons where charged particles have
finite mass and the electric charge is quantised already at the classical
level. In the electrodynamic limit, which physically corresponds to
electrodynamics of solitons of zero size, the Lagrangian of this model has two
degrees of freedom only and reduces to the Lagrangian of the Maxwell field in
dual representation. We derive the equations of motion and discuss their
relations with Maxwell's equations. It is shown that Coulomb and Lorentz forces
are a consequence of topology. Further, we relate the U(1) gauge invariance of
electrodynamics to the geometry of the soliton field, give a general relation
for the derivation of the soliton field from the field strength tensor in
electrodynamics and use this relation to express homogeneous electric fields in
terms of the soliton field.Comment: 13 pages, 4 figures, Introduction and Section II (Model Lagrangian)
rewritten, new chapters concerning electrodynamic limit and discussion of
causality inserte
Supersymmetry Breaking and Dilaton Stabilization in String Gas Cosmology
In this Note we study supersymmetry breaking via gaugino condensation in
string gas cosmology. We show that the same gaugino condensate which is
introduced to stabilize the dilaton breaks supersymmetry. We study the
constraints on the scale of supersymmetry breaking which this mechanism leads
to.Comment: 11 page
Brane Gas Cosmology, M-theory and Little String Theory
We generalize the Brane Gas Cosmological Scenario to M-theory degrees of
freedom, namely and branes. Without brane intersections, the
Brandenberger Vafa(BV) arguments applied to M-theory degrees of freedom
generically predict a large 6 dimensional spacetime. We show that intersections
of and branes can instead lead to a large 4 dimensional spacetime.
One dimensional intersections in 11D is related to (2,0) little strings (LST)
on NS5 branes in type IIA. The gas regime of membranes in M-theory corresponds
to the thermodynamics of LST obtained from holography. We propose a mechanism
whereby LST living on the worldvolume of NS5 (M5)-branes wrapping a five
dimensional torus, annihilate most efficiently in 3+1 dimensions leading to a
large 3+1 dimensional spacetime. We also show that this picture is consistent
with the gas approximation in M-theory.Comment: 8 page
Inflation in Gauged 6D Supergravity
In this note we demonstrate that chaotic inflation can naturally be realized
in the context of an anomaly free minimal gauged supergravity in D=6 which has
recently been the focus of some attention. This particular model has a unique
maximally symmetric ground state solution, which leaves
half of the six-dimensional supersymmetries unbroken. In this model, the
inflaton field originates from the complex scalar fields in the D=6
scalar hypermultiplet. The mass and the self couplings of the scalar field are
dictated by the D=6 Lagrangian. The scalar potential has an absolute munimum at
with no undetermined moduli fields. Imposing a mild bound on the
radius of enables us to obtain chaotic inflation. The low eenrgy
equations of motion are shown to be consistent for the range of scalar field
values relevant for inflation.Comment: one reference adde
Entropy of Anisotropic Universe and Fractional Branes
We obtain the entropy of a homogeneous anisotropic universe applicable, by
assumption, to the fractional branes in the universe in the model of Chowdhury
and Mathur. The entropy for the 3 or 4 charge fractional branes thus obtained
is not of the expected form E^{{3/2}} or E^2. One way the expected form is
realised is if p \to \rho for the transverse directions and if the compact
directions remain constant in size. These conditions are likely to be enforced
by brane decay and annihilation, and by the S, T, U dualities. T duality is
also likely to exclude high entropic cases, found in the examples, which arise
due to the compact space contracting to zero size. Then the 4 charge fractional
branes may indeed provide a detailed realisation of the maximum entropic
principle we proposed recently to determine the number (3 + 1) of large
spacetime dimensions.Comment: Version 2: 21 pages. More discussion and references added. To appear
in General Relativity and Gravitatio
Cosmological perturbations and short distance physics from Noncommutative Geometry
We investigate the possible effects on the evolution of perturbations in the
inflationary epoch due to short distance physics. We introduce a suitable non
local action for the inflaton field, suggested by Noncommutative Geometry, and
obtained by adopting a generalized star product on a Friedmann-Robertson-Walker
background. In particular, we study how the presence of a length scale where
spacetime becomes noncommutative affects the gaussianity and isotropy
properties of fluctuations, and the corresponding effects on the Cosmic
Microwave Background spectrum.Comment: Published version, 16 page
Inflation and Brane Gases
We investigate a new way of realizing a period of cosmological inflation in
the context of brane gas cosmology. It is argued that a gas of co-dimension one
branes, out of thermal equilibrium with the rest of the matter, has an equation
of state which can - after stabilization of the dilaton - lead to power-law
inflation of the bulk. The most promising implementation of this mechanism
might be in Type IIB superstring theory, with inflation of the three large
spatial dimensions triggered by ``stabilized embedded 2-branes''. Possible
applications and problems with this proposal are discussed.Comment: 7 pages, uses REVTeX, version to appear in Phys. Rev.
Maternal nutrient restriction in Guinea pigs leads to fetal growth restriction with evidence for chronic hypoxia
BackgroundWe determined whether maternal nutrient restriction (MNR) in Guinea pigs leading to fetal growth restriction (FGR) impacts markers for tissue hypoxia, implicating a mechanistic role for chronic hypoxia.MethodsGuinea pigs were fed ad libitum (Control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Near term, hypoxyprobe-1 (HP-1), a marker of tissue hypoxia, was injected into pregnant sows. Fetuses were then necropsied and liver, kidney, and placental tissues were processed for erythropoietin (EPO), EPO-receptor (EPOR), and vascular endothelial growth factor (VEGF) protein levels, and for HP-1 immunoreactivity (IR).ResultsFGR-MNR fetuses were 36% smaller with asymmetrical growth restriction compared to controls. EPO and VEGF protein levels were increased in the female FGR-MNR fetuses, providing support for hypoxic stimulus and linkage to increased erythropoiesis, but not in the male FGR-MNR fetuses, possibly reflecting a weaker link between oxygenation and erythropoiesis. HP-1 IR was increased in the liver and kidneys of both male and female FGR-MNR fetuses as an index of local tissue hypoxia, but with no changes in the placenta.ConclusionChronic hypoxia is likely to be an important signaling mechanism for the decreased fetal growth seen with maternal undernutrition and appears to be post-placental in nature
- …