232 research outputs found

    Probing the time dependence of dark energy

    Full text link
    A new method to investigate a possible time-dependence of the dark energy equation of state ww is proposed. We apply this methodology to two of the most recent data sets of type Ia supernova (Union2 and SDSS) and the baryon acoustic oscillation peak at z=0.35z = 0.35. For some combinations of these data, we show that there is a clear departure from the standard Λ\LambdaCDM model at intermediary redshifts, although a non-evolving dark energy component (dw/dz=0dw/dz = 0) cannot be ruled out by these data. The approach developed here may be useful to probe a possible evolving dark energy component when applied to upcoming observational data.Comment: 6 pages, 3 figures, LaTe

    Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements

    Get PDF
    We present new determinations of the cosmic expansion history from red-envelope galaxies. We have obtained for this purpose high-quality spectra with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters in the redshift range 0.2 < z < 1.0. We complement these Keck spectra with high-quality, publicly available archival spectra from the SPICES and VVDS surveys. We improve over our previous expansion history measurements in Simon et al. (2005) by providing two new determinations of the expansion history: H(z) = 97 +- 62 km/sec/Mpc at z = 0.5 and H(z) = 90 +- 40 km/sec/Mpc at z = 0.8. We discuss the uncertainty in the expansion history determination that arises from uncertainties in the synthetic stellar-population models. We then use these new measurements in concert with cosmic-microwave-background (CMB) measurements to constrain cosmological parameters, with a special emphasis on dark-energy parameters and constraints to the curvature. In particular, we demonstrate the usefulness of direct H(z) measurements by constraining the dark- energy equation of state parameterized by w0 and wa and allowing for arbitrary curvature. Further, we also constrain, using only CMB and H(z) data, the number of relativistic degrees of freedom to be 4 +- 0.5 and their total mass to be < 0.2 eV, both at 1-sigma.Comment: Submitted to JCA

    The Two-Loop Pinch Technique in the Electroweak Sector

    Get PDF
    The generalization of the two-loop Pinch Technique to the Electroweak Sector of the Standard Model is presented. We restrict ourselves to the case of conserved external currents, and provide a detailed analysis of both the charged and neutral sectors. The crucial ingredient for this construction is the identification of the parts discarded during the pinching procedure with well-defined contributions to the Slavnov-Taylor identity satisfied by the off-shell one-loop gauge-boson vertices; the latter are nested inside the conventional two-loop self-energies. It is shown by resorting to a set of powerful identities that the two-loop effective Pinch Technique self-energies coincide with the corresponding ones computed in the Background Feynman gauge. The aforementioned identities are derived in the context of the Batalin-Vilkovisky formalism, a fact which enables the individual treatment of the self-energies of the photon and the ZZ-boson. Some possible phenomenological applications are briefly discussed.Comment: 50 pages, uses axodra

    The staggered domain wall fermion method

    Get PDF
    A different lattice fermion method is introduced. Staggered domain wall fermions are defined in 2n+1 dimensions and describe 2^n flavors of light lattice fermions with exact U(1) x U(1) chiral symmetry in 2n dimensions. As the size of the extra dimension becomes large, 2^n chiral flavors with the same chiral charge are expected to be localized on each boundary and the full SU(2^n) x SU(2^n) flavor chiral symmetry is expected to be recovered. SDWF give a different perspective into the inherent flavor mixing of lattice fermions and by design present an advantage for numerical simulations of lattice QCD thermodynamics. The chiral and topological index properties of the SDWF Dirac operator are investigated. And, there is a surprise ending...Comment: revtex4, 7 figures, minor revisions, 2 references adde

    Observational Constraints to Ricci Dark Energy Model by Using: SN, BAO, OHD, fgas Data Sets

    Full text link
    In this paper, we perform a global constraint on the Ricci dark energy model with both the flat case and the non-flat case, using the Markov Chain Monte Carlo (MCMC) method and the combined observational data from the cluster X-ray gas mass fraction, Supernovae of type Ia (397), baryon acoustic oscillations, current Cosmic Microwave Background, and the observational Hubble function. In the flat model, we obtain the best fit values of the parameters in 1σ,2σ1\sigma, 2\sigma regions: Ωm0=0.29270.03230.0388+0.0420+0.0542\Omega_{m0}=0.2927^{+0.0420 +0.0542}_{-0.0323 -0.0388}, α=0.38230.04180.0541+0.0331+0.0415\alpha=0.3823^{+0.0331 +0.0415}_{-0.0418 -0.0541}, Age/Gyr=13.480.160.21+0.13+0.17Age/Gyr=13.48^{+0.13 +0.17}_{-0.16 -0.21}, H0=69.092.373.39+2.56+3.09H_0=69.09^{+2.56 +3.09}_{-2.37 -3.39}. In the non-flat model, the best fit parameters are found in 1σ,2σ1\sigma, 2\sigma regions:Ωm0=0.30030.03710.0423+0.0367+0.0429\Omega_{m0}=0.3003^{+0.0367 +0.0429}_{-0.0371 -0.0423}, α=0.38450.04740.0523+0.0386+0.0521\alpha=0.3845^{+0.0386 +0.0521}_{-0.0474 -0.0523}, Ωk=0.02400.01300.0153+0.0109+0.0133\Omega_k=0.0240^{+0.0109 +0.0133}_{-0.0130 -0.0153}, Age/Gyr=12.540.370.49+0.51+0.65Age/Gyr=12.54^{+0.51 +0.65}_{-0.37 -0.49}, H0=72.893.053.72+3.31+3.88H_0=72.89^{+3.31 +3.88}_{-3.05 -3.72}. Compared to the constraint results in the ΛCDM\Lambda \textmd{CDM} model by using the same datasets, it is shown that the current combined datasets prefer the ΛCDM\Lambda \textmd{CDM} model to the Ricci dark energy model.Comment: 12 pages, 3 figure

    Running coupling: Does the coupling between dark energy and dark matter change sign during the cosmological evolution?

    Full text link
    In this paper we put forward a running coupling scenario for describing the interaction between dark energy and dark matter. The dark sector interaction in our scenario is free of the assumption that the interaction term QQ is proportional to the Hubble expansion rate and the energy densities of dark sectors. We only use a time-variable coupling b(a)b(a) (with aa the scale factor of the universe) to characterize the interaction QQ. We propose a parametrization form for the running coupling b(a)=b0a+be(1a)b(a)=b_0a+b_e(1-a) in which the early-time coupling is given by a constant beb_e, while today the coupling is given by another constant, b0b_0. For investigating the feature of the running coupling, we employ three dark energy models, namely, the cosmological constant model (w=1w=-1), the constant ww model (w=w0w=w_0), and the time-dependent ww model (w(a)=w0+w1(1a)w(a)=w_0+w_1(1-a)). We constrain the models with the current observational data, including the type Ia supernova, the baryon acoustic oscillation, the cosmic microwave background, the Hubble expansion rate, and the X-ray gas mass fraction data. The fitting results indicate that a time-varying vacuum scenario is favored, in which the coupling b(z)b(z) crosses the noninteracting line (b=0b=0) during the cosmological evolution and the sign changes from negative to positive. The crossing of the noninteracting line happens at around z=0.20.3z=0.2-0.3, and the crossing behavior is favored at about 1σ\sigma confidence level. Our work implies that we should pay more attention to the time-varying vacuum model and seriously consider the phenomenological construction of a sign-changeable or oscillatory interaction between dark sectors.Comment: 8 pages, 5 figures; refs added; to appear in EPJ

    Observational constraints on holographic dark energy with varying gravitational constant

    Full text link
    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1σ\sigma we find ΩΛ0=0.720.03+0.03\Omega_{\Lambda0}=0.72^{+0.03}_{-0.03}, Ωk0=0.00130.0040+0.0130\Omega_{k0}=-0.0013^{+0.0130}_{-0.0040}, c=0.800.14+0.19c=0.80^{+0.19}_{-0.14} and ΔGG/G=0.00250.0050+0.0080\Delta_G\equiv G'/G=-0.0025^{+0.0080}_{-0.0050}, while for the present value of the dark energy equation-of-state parameter we obtain w0=1.040.20+0.15w_0=-1.04^{+0.15}_{-0.20}.Comment: 12 pages, 2 figures, version published in JCA

    Zero temperature string breaking in lattice quantum chromodynamics

    Get PDF
    The separation of a heavy quark and antiquark pair leads to the formation of a tube of flux, or "string", which should break in the presence of light quark-antiquark pairs. This expected zero-temperature phenomenon has proven elusive in simulations of lattice QCD. We study mixing between the string state and the two-meson decay channel in QCD with two flavors of dynamical sea quarks. We confirm that mixing is weak and find that it decreases at level crossing. While our study does not show direct effects of internal quark loops, our results, combined with unitarity, give clear confirmation of string breaking.Comment: 20 pages, 7 figures. With small clarifications and two additions to references. Submitted to Phys. Rev.

    Quasiparticle Interactions in Fractional Quantum Hall Systems: Justification of Different Hierarchy Schemes

    Full text link
    The pseudopotentials describing the interactions of quasiparticles in fractional quantum Hall (FQH) states are studied. Rules for the identification of incompressible quantum fluid ground states are found, based upon the form of the pseudopotentials. States belonging to the Jain sequence nu=n/(1+2pn), where n and p are integers, appear to be the only incompressible states in the thermodynamic limit, although other FQH hierarchy states occur for finite size systems. This explains the success of the composite Fermion picture.Comment: RevTeX, 10 pages, 7 EPS figures, submitted fo Phys.Rev.

    The kk-essence scalar field in the context of Supernova Ia Observations

    Full text link
    A kk-essence scalar field model having (non canonical) Lagrangian of the form L=V(ϕ)F(X)L=-V(\phi)F(X) where X=1/2gμνμϕνϕX=1/2g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi with constant V(ϕ)V(\phi) is shown to be consistent with luminosity distance-redshift data observed for type Ia Supernova. For constant V(ϕ)V(\phi), F(X)F(X) satisfies a scaling relation which is used to set up a differential equation involving the Hubble parameter HH, the scale factor aa and the kk-essence field ϕ\phi. HH and aa are extracted from SNe Ia data and using the differential equation the time dependence of the field ϕ\phi is found to be: ϕ(t)λ0+λ1t+λ2t2\phi(t) \sim \lambda_0 + \lambda_1 t + \lambda_2 t^2. The constants λi\lambda_i have been determined. The time dependence is similar to that of the quintessence scalar field (having canonical kinetic energy) responsible for homogeneous inflation. Furthermore, the scaling relation and the obtained time dependence of the field ϕ\phi is used to determine the XX-dependence of the function F(X)F(X).Comment: 8 pages, 5 figures, Late
    corecore