60 research outputs found
Zero-Resistance States Induced by Electromagnetic-Wave Excitation in GaAs/AlGaAs Heterostructures
We report the detection of novel zero-resistance states induced by
electromagnetic wave excitation in ultra high mobility GaAs/AlGaAs
heterostructure devices, at low magnetic fields, , in the large filling
factor limit. Vanishing resistance is observed in the vicinity of , where , where m is the
effective mass, e is the charge, and \textit{f} is the microwave frequency. The
dependence of the effect is reported as a function of \textit{f}, the
temperature, and the power.Comment: Proc. EP2DS-15 [Nara (Japan), 14-18 July 2003]; 5 Pages, 10 Color
Figure
Radiation induced oscillatory Hall effect in high mobility GaAs/AlGaAs devices
We examine the radiation induced modification of the Hall effect in high
mobility GaAs/AlGaAs devices that exhibit vanishing resistance under microwave
excitation. The modification in the Hall effect upon irradiation is
characterized by (a) a small reduction in the slope of the Hall resistance
curve with respect to the dark value, (b) a periodic reduction in the magnitude
of the Hall resistance, , that correlates with an increase in the
diagonal resistance, , and (c) a Hall resistance correction that
disappears as the diagonal resistance vanishes.Comment: 4 pages text, 4 color figure
Radiation-induced oscillatory magnetoresistance as a sensitive probe of the zero-field spin splitting in high mobility GaAs/AlGaAs devices
We suggest an approach for characterizing the zero-field spin splitting of
high mobility two-dimensional electron systems, when beats are not readily
observable in the Shubnikov-de Haas effect. The zero-field spin splitting and
the effective magnetic field seen in the reference frame of the electron is
evaluated from a quantitative study of beats observed in radiation-induced
magnetoresistance oscillations.Comment: 4 pages, 4 color figure
Role of interference in MM-wave driven DC transport in two dimensional electron gas
In this paper we point out that in addition to the density of states effect
proposed in Ref.\cite{durst,anderson} one should consider the effect of
constructive interference between the multi-MM-wave-photon processes shown in
Fig.2. This process enhances the dark value of the conductivity. When the
sample is very pure, i.e., when the transport life time is very long, this
interference effect quickly diminishes as the MM-wave frequency deviates from
the cyclotron frequency. In this paper we also present the linear response
theory in the presence of strong harmonic time-dependent perturbation
Weak localization in InSb thin films heavily doped with lead
The paper reports on the investigations of the weak localization (WL) effects
in 3D polycrystalline thin films of InSb. The films are closely compensated
showing the electron concentration n>10^{16} cm^{-3} at the total concentration
of the donor and acceptor type structural defects >10^{18} cm^{-3}. Unless
Pb-doped, the InSb films do not show any measurable or show very small WL
effect at 4.2 K. The Pb-doping to the concentration of the order of 10^{18}
cm^{-3} leads to pronounced WL effects below 7 K. In particular, a clearly
manifested SO scattering is observed. From the comparison of the experimental
data on temperature dependence of the magnetoresistivity and sample resistance
with the WL theory, the temperature dependence of the phase destroying time is
determined. The determination is performed by fitting theoretical terms
obtained from Kawabata's theory to experimental data on magnetoresistance. It
is concluded that the dephasing process is connected to three separate
interaction processes. The first is due to the SO scatterings and is
characterized by temperature-independent relaxation time. The second is
associated with the electron-phonon interaction. The third dephasing process is
characterized by independent on temperature relaxation time tau_c. This
relaxation time is tentatively ascribed to inelastic scattering at extended
structural defects, like grain boundaries. The resulting time dephasing time
shows saturation in its temperature dependence. The temperature dependence of
the resistance of the InSb films can be explained by the electron-electron
interaction for T2 K.Comment: 15 pages with 5 figure
Impurity and spin effects on the magneto-spectroscopy of a THz-modulated nanostructure
We present a grid-free DFT model appropriate to explore the time evolution of
electronic states in a semiconductor nanostructure. The model can be used to
investigate both the linear and the nonlinear response of the system to an
external short-time perturbation in the THz regime. We use the model to study
the effects of impurities on the magneto-spectroscopy of a two-dimensional
electron gas in a nanostructure excited by an intense THz radiation. We do
observe a reduction in the binding energy of the impurity with increasing
excitation strength, and at a finite magnetic field we find a slow onset of
collective spin-oscillations that can be made to vanish with a stronger
excitation.Comment: LaTeX,10 pages with 11 embedded postscript figure
Far-infrared photo-conductivity of electrons in an array of nano-structured antidots
We present far-infrared (FIR) photo-conductivity measurements for a
two-dimensional electron gas in an array of nano-structured antidots. We
detect, resistively and spectrally resolved, both the magnetoplasmon and the
edge-magnetoplasmon modes. Temperature-dependent measurements demonstrates that
both modes contribute to the photo resistance by heating the electron gas via
resonant absorption of the FIR radiation. Influences of spin effect and phonon
bands on the collective excitations in the antidot lattice are observed.Comment: 5 pages, 3 figure
Non-adiabatic current generation in a finite width semiconductor ring
We consider a model of a semiconductor quantum ring of finite width in a
constant perpendicular magnetic field. We show how a current of the same order
as the persistent current can be generated non-adiabatically by a short
intensive pulse in the Tera-Hertz regime.Comment: LaTeX, 4 pages with included eps figure
Fermion Chern Simons Theory of Hierarchical Fractional Quantum Hall States
We present an effective Chern-Simons theory for the bulk fully polarized
fractional quantum Hall (FQH) hierarchical states constructed as daughters of
general states of the Jain series, {\it i. e.} as FQH states of the
quasi-particles or quasi-holes of Jain states. We discuss the stability of
these new states and present two reasonable stability criteria. We discuss the
theory of their edge states which follows naturally from this bulk theory. We
construct the operators that create elementary excitations, and discuss the
scaling behavior of the tunneling conductance in different situations. Under
the assumption that the edge states of these fully polarized hierarchical
states are unreconstructed and unresolved, we find that the differential
conductance for tunneling of electrons from a Fermi liquid into {\em any}
hierarchical Jain FQH states has the scaling behavior with the
universal exponent , where is the filling fraction of the
hierarchical state. Finally, we explore alternative ways of constructing FQH
states with the same filling fractions as partially polarized states, and
conclude that this is not possible within our approach.Comment: 10 pages, 50 references, no figures; formerly known as "Composite
Fermions: The Next Generation(s)" (title changed by the PRB thought police).
This version has more references and a discussion of the stability of the new
states. Published version. One erroneous reference is correcte
Adiabatic quantum pump in the presence of external ac voltages
We investigate a quantum pump which in addition to its dynamic pump
parameters is subject to oscillating external potentials applied to the
contacts of the sample. Of interest is the rectification of the ac currents
flowing through the mesoscopic scatterer and their interplay with the quantum
pump effect. We calculate the adiabatic dc current arising under the
simultaneous action of both the quantum pump effect and classical
rectification. In addition to two known terms we find a third novel
contribution which arises from the interference of the ac currents generated by
the external potentials and the ac currents generated by the pump. The
interference contribution renormalizes both the quantum pump effect and the ac
rectification effect. Analysis of this interference effect requires a
calculation of the Floquet scattering matrix beyond the adiabatic approximation
based on the frozen scattering matrix alone. The results permit us to find the
instantaneous current. In addition to the current generated by the oscillating
potentials, and the ac current due to the variation of the charge of the frozen
scatterer, there is a third contribution which represents the ac currents
generated by an oscillating scatterer. We argue that the resulting pump effect
can be viewed as a quantum rectification of the instantaneous ac currents
generated by the oscillating scatterer. These instantaneous currents are an
intrinsic property of a nonstationary scattering process.Comment: 11 pages, 1 figur
- …