446 research outputs found

    Einstein energy associated with the Friedmann -Robertson -Walker metric

    Full text link
    Following Einstein's definition of Lagrangian density and gravitational field energy density (Einstein, A., Ann. Phys. Lpz., 49, 806 (1916); Einstein, A., Phys. Z., 19, 115 (1918); Pauli, W., {\it Theory of Relativity}, B.I. Publications, Mumbai, 1963, Trans. by G. Field), Tolman derived a general formula for the total matter plus gravitational field energy (P0P_0) of an arbitrary system (Tolman, R.C., Phys. Rev., 35(8), 875 (1930); Tolman, R.C., {\it Relativity, Thermodynamics & Cosmology}, Clarendon Press, Oxford, 1962)); Xulu, S.S., arXiv:hep-th/0308070 (2003)). For a static isolated system, in quasi-Cartesian coordinates, this formula leads to the well known result P0=g(T00T11T22T33) d3xP_0 = \int \sqrt{-g} (T_0^0 - T_1^1 -T_2^2 -T_3^3) ~d^3 x, where gg is the determinant of the metric tensor and TbaT^a_b is the energy momentum tensor of the {\em matter}. Though in the literature, this is known as "Tolman Mass", it must be realized that this is essentially "Einstein Mass" because the underlying pseudo-tensor here is due to Einstein. In fact, Landau -Lifshitz obtained the same expression for the "inertial mass" of a static isolated system without using any pseudo-tensor at all and which points to physical significance and correctness of Einstein Mass (Landau, L.D., and Lifshitz, E.M., {\it The Classical Theory of Fields}, Pergamon Press, Oxford, 2th ed., 1962)! For the first time we apply this general formula to find an expression for P0P_0 for the Friedmann- Robertson -Walker (FRW) metric by using the same quasi-Cartesian basis. As we analyze this new result, physically, a spatially flat model having no cosmological constant is suggested. Eventually, it is seen that conservation of P0P_0 is honoured only in the a static limit.Comment: By mistake a marginally different earlier version was loaded, now the journal version is uploade

    Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments

    Get PDF
    Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity

    Electronic patient self-assessment and management (SAM): A novel framework for cancer survivorship

    Get PDF
    Background. We propose a novel framework for management of cancer survivorship: electronic patient Self-Assessment and Management (SAM). SAM is a framework for transfer of information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice. Methods. Patients who participate in the SAM system are contacted by email at regular intervals and asked to complete validated questionnaires online. Patient responses on these questionnaires are then analyzed in order to provide patients with real-time, online information about their progress and to provide them with tailored and standardized medical advice. Patient-level data from the questionnaires are ported in real time to the patient's health care provider to be uploaded to clinic notes. An initial version of SAM has been developed at Memorial Sloan-Kettering Cancer Center (MSKCC) and the University of California, San Francisco (UCSF) for aiding the clinical management of patients after surgery for prostate cancer. Results. Pilot testing at MSKCC and UCSF suggests that implementation of SAM systems are feasible, with no major problems with compliance (> 70% response rate) or security. Conclusion. SAM is a conceptually simple framework for passing information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice

    Teleparallel Energy-Momentum Distribution of Spatially Homogeneous Rotating Spacetimes

    Full text link
    The energy-momentum distribution of spatially homogeneous rotating spacetimes in the context of teleparallel theory of gravity is investigated. For this purpose, we use the teleparallel version of Moller prescription. It is found that the components of energy-momentum density are finite and well-defined but are different from General Relativity. However, the energy-momentum density components become the same in both theories under certain assumptions. We also analyse these quantities for some special solutions of the spatially homogeneous rotating spacetimes.Comment: 12 pages, accepted for publication in Int. J. Theor. Phy

    Energy Contents of Some Well-Known Solutions in Teleparallel Gravity

    Full text link
    In the context of teleparallel equivalent to General Relativity, we study energy and its relevant quantities for some well-known black hole solutions. For this purpose, we use the Hamiltonian approach which gives reasonable and interesting results. We find that our results of energy exactly coincide with several prescriptions in General Relativity. This supports the claim that different energy-momentum prescriptions can give identical results for a given spacetime. We also evaluate energy-momentum flux of these solutions.Comment: 16 pages, accepted for publication in Astrophys. Space Sc

    Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight

    Get PDF
    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. For 14 of these events, this radiation was reflected from the ice. The dominant contribution to the radiation from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. This radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of 36km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations. In addition, we find that the Monte Carlo simulation of the ANITA data set is in agreement with the total number of observed events and with the properties of those events.Comment: Added more explanation of the experimental setup and textual improvement

    Energy and Momentum Densities Associated with Solutions Exhibiting Directional Type Singularities

    Full text link
    We obtain the energy and momentum densities of a general static axially symmetric vacuum space-time described by the Weyl metric, using Landau-Lifshitz and Bergmann-Thomson energy-momentum complexes. These two definitions of the energy-momentum complex do not provide the same energy density for the space-time under consideration, while give the same momentum density. We show that, in the case of Curzon metric which is a particular case of the Weyl metric, these two definitions give the same energy only when RR \to \infty. Furthermore, we compare these results with those obtained using Einstein, Papapetrou and M{\o}ller energy momentum complexes.Comment: 10 pages, references added, minor corrections [Admin note: substantial overlap with gr-qc/0403097 , gr-qc/0403039

    Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics

    Get PDF
    A framework is introduced which explains the existence and similarities of most exact solutions of the Einstein equations with a wide range of sources for the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian formulation. This class includes the spatially homogeneous cosmological models and the astrophysically interesting static spherically symmetric models as well as the stationary cylindrically symmetric models. The framework involves methods for finding and exploiting hidden symmetries and invariant submanifolds of the Hamiltonian formulation of the field equations. It unifies, simplifies and extends most known work on hypersurface-homogeneous exact solutions. It is shown that the same framework is also relevant to gravitational theories with a similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for publication in Phys. Rev.

    Using behavior-analytic implicit tests to assess sexual interests among normal and sex-offender populations

    Get PDF
    The development of implicit tests for measuring biases and behavioral predispositions is a recent development within psychology. While such tests are usually researched within a social-cognitive paradigm, behavioral researchers have also begun to view these tests as potential tests of conditioning histories, including in the sexual domain. The objective of this paper is to illustrate the utility of a behavioral approach to implicit testing and means by which implicit tests can be built to the standards of behavioral psychologists. Research findings illustrating the short history of implicit testing within the experimental analysis of behavior are reviewed. Relevant parallel and overlapping research findings from the field of social cognition and on the Implicit Association Test are also outlined. New preliminary data obtained with both normal and sex offender populations are described in order to illustrate how behavior-analytically conceived implicit tests may have potential as investigative tools for assessing histories of sexual arousal conditioning and derived stimulus associations. It is concluded that popular implicit tests are likely sensitive to conditioned and derived stimulus associations in the history of the test-taker rather than 'unconscious cognitions', per se
    corecore