126 research outputs found
Improving Human Plateaued Motor Skill with Somatic Stimulation
Procedural motor learning includes a period when no substantial gain in performance improvement is obtained even with repeated, daily practice. Prompted by the potential benefit of high-frequency transcutaneous electrical stimulation, we examined if the stimulation to the hand reduces redundant motor activity that likely exists in an acquired hand motor skill, so as to further upgrade stable motor performance. Healthy participants were trained until their motor performance of continuously rotating two balls in the palm of their right hand became stable. In the series of experiments, they repeated a trial performing this cyclic rotation as many times as possible in 15 s. In trials where we applied the stimulation to the relaxed thumb before they initiated the task, most reported that their movements became smoother and they could perform the movements at a higher cycle compared to the control trials. This was not possible when the dorsal side of the wrist was stimulated. The performance improvement was associated with reduction of amplitude of finger displacement, which was consistently observed irrespective of the task demands. Importantly, this kinematic change occurred without being noticed by the participants, and their intentional changes of motor strategies (reducing amplitude of finger displacement) never improved the performance. Moreover, the performance never spontaneously improved during one-week training without stimulation, whereas the improvement in association with stimulation was consistently observed across days during training on another week combined with the stimulation. The improved effect obtained in stimulation trials on one day partially carried over to the next day, thereby promoting daily improvement of plateaued performance, which could not be unlocked by the first-week intensive training. This study demonstrated the possibility of effectively improving a plateaued motor skill, and pre-movement somatic stimulation driving this behavioral change
Experimentation on Analogue Models
Summary
Analogue models are actual physical setups used to model something else. They are especially useful when what we wish to investigate is difficult to observe or experiment upon due to size or distance in space or time: for example, if the thing we wish to investigate is too large, too far away, takes place on a time scale that is too long, does not yet exist or has ceased to exist. The range and variety of analogue models is too extensive to attempt a survey. In this article, I describe and discuss several different analogue model experiments, the results of those model experiments, and the basis for constructing them and interpreting their results. Examples of analogue models for surface waves in lakes, for earthquakes and volcanoes in geophysics, and for black holes in general relativity, are described, with a focus on examining the bases for claims that these analogues are appropriate analogues of what they are used to investigate. A table showing three different kinds of bases for reasoning using analogue models is provided. Finally, it is shown how the examples in this article counter three common misconceptions about the use of analogue models in physics
Viabilidade de ovos de Aedes aegypti (Diptera, Culicidae) em diferentes condições de armazenamento em Manaus, Amazonas, Brasil
The viability of Aedes aegypti eggs was assessed in the Amazon region. The eggs were maintained under different conditions: indoors (insectarium) and outdoors (natural environment), as well as in different storage types (plastic cup, paper envelope, plastic bag) for different days. Egg viability was measured as the mean of hatchings observed from egg-bearing sheets of filter paper immersed in water, using three sheets randomly selected from each storage type and at both sites. There were significant differences in the viability of Ae. aegypti eggs with respect to the location (F=30.40; DF=1; P<0.0001), storage type (F=17.66; DF=2; P<0.0001), and time of storage (F=49.56; DF=9; P<0.0001). The interaction between storage site versus storage type was also significant (F=15.96; DF=2; P<0.0001). A higher hatching mean was observed for the eggs kept in the insectarium than for those outdoors (32.38 versus 7.46). Hatching rates of egg batches stored for 12 to 61 days ranged between 84 and 90%. A reduction was observed between 89 and 118 days, with values of 63 and 48%, respectively. With respect to type of storage, mean egg hatching was higher for the eggs in plastic cups (44.46). It was concluded that the viability of the eggs of Ae. aegypti in the Amazon region remains high up to 4 months, after which it declines drastically, although in this study hatching occurred for up to 8 months in very low percentages. © 2017, Instituto Internacional de Ecologia. All rights reserved
The development of the graphics-decoding proficiency instrument
The Graphics-Decoding Proficiency (G-DP) instrument was developed as a screening test for the purpose of measuring students’ (aged 8-11 years) capacity to solve graphics-based mathematics tasks. These tasks include number lines, column graphs, maps and pie charts. The instrument was developed within a theoretical framework which highlights the various types of information graphics commonly presented to students in large-scale national and international assessments. The instrument provides researchers, classroom teachers and test designers with an assessment tool which measures students’ graphics decoding proficiency across and within five broad categories of information graphics. The instrument has implications for a number of stakeholders in an era where graphics have become an increasingly important way of representing information
- …