116 research outputs found

    On the origin of the zero-resistance anomaly in heavy fermion superconducting Ir: a clue from magnetic field and Rh-doping studies

    Full text link
    We present the results of the specific heat and AC magnetic susceptibility measurements of CeIr1xRhxIn5CeIr_{1-x}Rh_xIn_5 for x from 0 to 0.5. As x is increased from 0 both quantities reflect the competition between two effects. The first is a suppression of superconductivity below the bulk transition temperature of Tc=0.4_c = 0.4 K, which is due to the pair breaking effect of Rh impurities. The second is an increase in the volume fraction of the superconducting regions above Tc_c, which we attribute to defect-induced strain. Analysis of the H-T phase diagram for CeIrIn5_5obtained from the bulk probes and resistance measurements points to the filamentary origin of the inhomogeneous superconductivity at Tρ1.2_\rho \approx 1.2 K, where the resistance drops to zero. The identical anisotropies in the magnetic field dependence of the specific heat and the resistance anomalies in CeIrIn5_5 indicate that the filamentary superconductivity is intrinsic, involving electrons from the part of the Fermi surface responsible for bulk superconductivity.Comment: 4 page

    Cracks in Martensite Plates as Hydrogen Traps in a Bearing Steel

    Get PDF
    It is demonstrated that a macroscopically homogeneous distribution of tiny cracks introduced into a martensitic bearing steel sample can provide powerful hydrogen traps. The phenomenon has been investigated through thermal desorption spectroscopy and hydrogen permeation measurements using both cracked and integral samples. The e↵ective hydrogen di↵usion coefficient through the cracked sample is found to be far less than in the uncracked one. Similarly, when samples are charged with hydrogen, and then subjected to thermal desorption analysis, the amount of hydrogen liberated from the cracked sample is smaller due to the trapping by the cracks. Theoretical analysis of the data shows that the traps due to cracks are so strong, that any hydrogen within the cracks can never in practice de-trap and cause harm by mechanisms that require the hydrogen to be mobile for the onset of embrittlement.W. Solano-Alvarez is very grateful for support from the Worshipful Company of Ironmongers, CONACyT, the Cambridge Overseas Trust, and the Roberto Rocca Education Programme.This is the accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11661-014-2680-8
    corecore