680 research outputs found
Spectroscopy of Giant Stars in the Pyxis Globular Cluster
The Pyxis globular cluster is a recently discovered globular cluster that
lies in the outer halo (R_{gc} ~ 40 kpc) of the Milky Way. Pyxis lies along one
of the proposed orbital planes of the Large Magellanic Cloud (LMC), and it has
been proposed to be a detached LMC globular cluster captured by the Milky Way.
We present the first measurement of the radial velocity of the Pyxis globular
cluster based on spectra of six Pyxis giant stars. The mean heliocentric radial
velocity is ~ 36 km/sec, and the corresponding velocity of Pyxis with respect
to a stationary observer at the position of the Sun is ~ -191 km/sec. This
radial velocity is a large enough fraction of the cluster's expected total
space velocity, assuming that it is bound to the Milky Way, that it allows
strict limits to be placed on the range of permissible transverse velocities
that Pyxis could have in the case that it still shares or nearly shares an
orbital pole with the LMC. We can rule out that Pyxis is on a near circular
orbit if it is Magellanic debris, but we cannot rule out an eccentric orbit
associated with the LMC. We have calculated the range of allowed proper motions
for the Pyxis globular cluster that result in the cluster having an orbital
pole within 15 degrees of the present orbital pole of the LMC and that are
consistent with our measured radial velocity, but verification of the tidal
capture hypothesis must await proper motion measurement from the Space
Interferometry Mission or HST. A spectroscopic metallicity estimate of [Fe/H] =
-1.4 +/- 0.1 is determined for Pyxis from several spectra of its brightest
giant; this is consistent with photometric determinations of the cluster
metallicity from isochrone fitting.Comment: 22 pages, 5 figures, aaspp4 style, accepted for publication in
October, 2000 issue of the PAS
Sudden Gravitational Transition
We investigate the properties of a cosmological scenario which undergoes a gravitational phase transition at late times. In this scenario, the Universe evolves according to general relativity in the standard, hot big bang picture until a redshift z≲1. Nonperturbative phenomena associated with a minimally-coupled scalar field catalyzes a transition, whereby an order parameter consisting of curvature quantities such as R2, RabRab, RabcdRabcd acquires a constant expectation value. The ensuing cosmic acceleration appears driven by a dark-energy component with an equation-of-state w\u3c−1. We evaluate the constraints from type 1a supernovae, the cosmic microwave background, and other cosmological observations. We find that a range of models making a sharp transition to cosmic acceleration are consistent with observations
A Chemical Composition Survey of the Iron-Complex Globular Cluster NGC 6273 (M 19)
Recent observations have shown that a growing number of the most massive
Galactic globular clusters contain multiple populations of stars with different
[Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been
recognized as a member of this "iron-complex" cluster class, and we provide
here a chemical and kinematic analysis of > 300 red giant branch (RGB) and
asymptotic giant branch (AGB) member stars using high resolution spectra
obtained with the Magellan-M2FS and VLT-FLAMES instruments. Multiple lines of
evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that
ranges from about [Fe/H] = -2 to -1 dex, and may include at least three
populations with different [Fe/H] values. The three populations identified here
contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars,
but a Mg-Al anti-correlation may only be present in stars with [Fe/H] > -1.65.
The strong correlation between [La/Eu] and [Fe/H] suggests that the s-process
must have dominated the heavy element enrichment at higher metallicities. A
small group of stars with low [alpha/Fe] is identified and may have been
accreted from a former surrounding field star population. The cluster's large
abundance variations are coupled with a complex, extended, and multimodal blue
horizontal branch (HB). The HB morphology and chemical abundances suggest that
NGC 6273 may have an origin that is similar to omega Cen and M 54.Comment: Accepted for Publication in The Astrophysical Journal; 50 pages; 18
figures; 8 tables; higher resolution figures are available upon request or in
the published journal articl
Data-Driven Homologue Matching for Chromosome Identification
Karyotyping involves the visualization and classification of chromosomes into standard classes. In normal human metaphase spreads, chromosomes occur in homologous pairs for the autosomal classes 1-22, and X chromosome for females. Many existing approaches for performing automated human chromosome image analysis presuppose cell normalcy, containing 46 chromosomes within a metaphase spread with two chromosomes per class. This is an acceptable assumption for routine automated chromosome image analysis. However, many genetic abnormalities are directly linked to structural or numerical aberrations of chromosomes within the metaphase spread. Thus, two chromosomes per class cannot be assumed for anomaly analysis. This paper presents the development of image analysis techniques which are extendible to detecting numerical aberrations evolving from structural abnormalities. Specifically, an approach to identifying normal chromosomes from selected class(es) within a metaphase spread is presented. Chromosome assignment to a specific class is initially based on neural networks, followed by banding pattern and centromeric index criteria checking, and concluding with homologue matching. Experimental results are presented comparing neural networks as the sole classifier to the authors\u27 homologue matcher for identifying class 17 within normal and abnormal metaphase spreads
Abnormal Cell Detection using the Choquet Integral
Automated Giemsa-banded chromosome image research has been largely restricted to classification schemes associated with isolated chromosomes within metaphase spreads. In normal human metaphase spreads, there are 46 chromosomes occurring in homologous pairs for the autosomal classes 1-22 and the X chromosome for females. Many genetic abnormalities are directly linked to structural and/or numerical aberrations of chromosomes within metaphase spreads. Cells with the Philadelphia chromosome contain an abnormal chromosome for class 9 and for class 22, leaving a single normal chromosome for each class. A data-driven homologue matching technique is applied to recognizing normal chromosomes from classes 9 and 22. Homologue matching integrates neural networks, dynamic programming and the Choquet integral for chromosome recognition. The inability to locate matching homologous pairs for classes 9 and 22 provides an indication that the cell is abnormal, potentially containing the Philadelphia chromosome. Applying this technique to 50 normal and to 48 abnormal cells containing the Philadelphia chromosome yields 100.0% correct abnormal cell detection with a 24.0% false positive rate
The Kepler Pixel Response Function
Kepler seeks to detect sequences of transits of Earth-size exoplanets
orbiting Solar-like stars. Such transit signals are on the order of 100 ppm.
The high photometric precision demanded by Kepler requires detailed knowledge
of how the Kepler pixels respond to starlight during a nominal observation.
This information is provided by the Kepler pixel response function (PRF),
defined as the composite of Kepler's optical point spread function, integrated
spacecraft pointing jitter during a nominal cadence and other systematic
effects. To provide sub-pixel resolution, the PRF is represented as a
piecewise-continuous polynomial on a sub-pixel mesh. This continuous
representation allows the prediction of a star's flux value on any pixel given
the star's pixel position. The advantages and difficulties of this polynomial
representation are discussed, including characterization of spatial variation
in the PRF and the smoothing of discontinuities between sub-pixel polynomial
patches. On-orbit super-resolution measurements of the PRF across the Kepler
field of view are described. Two uses of the PRF are presented: the selection
of pixels for each star that maximizes the photometric signal to noise ratio
for that star, and PRF-fitted centroids which provide robust and accurate
stellar positions on the CCD, primarily used for attitude and plate scale
tracking. Good knowledge of the PRF has been a critical component for the
successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for
publication
A Search for Exozodiacal Clouds with Kepler
Planets embedded within dust disks may drive the formation of large scale
clumpy dust structures by trapping dust into resonant orbits. Detection and
subsequent modeling of the dust structures would help constrain the mass and
orbit of the planet and the disk architecture, give clues to the history of the
planetary system, and provide a statistical estimate of disk asymmetry for
future exoEarth-imaging missions. Here we present the first search for these
resonant structures in the inner regions of planetary systems by analyzing the
light curves of hot Jupiter planetary candidates identified by the Kepler
mission. We detect only one candidate disk structure associated with KOI 838.01
at the 3-sigma confidence level, but subsequent radial velocity measurements
reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk
structure is a false positive. Using our null result, we place an upper limit
on the frequency of dense exozodi structures created by hot Jupiters. We find
that at the 90% confidence level, less than 21% of Kepler hot Jupiters create
resonant dust clumps that lead and trail the planet by ~90 degrees with optical
depths >~5*10^-6, which corresponds to the resonant structure expected for a
lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as
the zodiacal cloud.Comment: 22 pages, 6 figures, Accepted for publication in Ap
The K2 Mission: Characterization and Early results
The K2 mission will make use of the Kepler spacecraft and its assets to
expand upon Kepler's groundbreaking discoveries in the fields of exoplanets and
astrophysics through new and exciting observations. K2 will use an innovative
way of operating the spacecraft to observe target fields along the ecliptic for
the next 2-3 years. Early science commissioning observations have shown an
estimated photometric precision near 400 ppm in a single 30 minute observation,
and a 6-hour photometric precision of 80 ppm (both at V=12). The K2 mission
offers long-term, simultaneous optical observation of thousands of objects at a
precision far better than is achievable from ground-based telescopes. Ecliptic
fields will be observed for approximately 75-days enabling a unique exoplanet
survey which fills the gaps in duration and sensitivity between the Kepler and
TESS missions, and offers pre-launch exoplanet target identification for JWST
transit spectroscopy. Astrophysics observations with K2 will include studies of
young open clusters, bright stars, galaxies, supernovae, and asteroseismology.Comment: 25 pages, 11 figures, Accepted to PAS
- …