331 research outputs found
Can Punctured Rate-1/2 Turbo Codes Achieve a Lower Error Floor than their Rate-1/3 Parent Codes?
In this paper we concentrate on rate-1/3 systematic parallel concatenated
convolutional codes and their rate-1/2 punctured child codes. Assuming
maximum-likelihood decoding over an additive white Gaussian channel, we
demonstrate that a rate-1/2 non-systematic child code can exhibit a lower error
floor than that of its rate-1/3 parent code, if a particular condition is met.
However, assuming iterative decoding, convergence of the non-systematic code
towards low bit-error rates is problematic. To alleviate this problem, we
propose rate-1/2 partially-systematic codes that can still achieve a lower
error floor than that of their rate-1/3 parent codes. Results obtained from
extrinsic information transfer charts and simulations support our conclusion.Comment: 5 pages, 7 figures, Proceedings of the 2006 IEEE Information Theory
Workshop, Chengdu, China, October 22-26, 200
Towards Energy Neutrality in Energy Harvesting Wireless Sensor Networks: A Case for Distributed Compressive Sensing?
This paper advocates the use of the emerging distributed compressive sensing
(DCS) paradigm in order to deploy energy harvesting (EH) wireless sensor
networks (WSN) with practical network lifetime and data gathering rates that
are substantially higher than the state-of-the-art. In particular, we argue
that there are two fundamental mechanisms in an EH WSN: i) the energy diversity
associated with the EH process that entails that the harvested energy can vary
from sensor node to sensor node, and ii) the sensing diversity associated with
the DCS process that entails that the energy consumption can also vary across
the sensor nodes without compromising data recovery. We also argue that such
mechanisms offer the means to match closely the energy demand to the energy
supply in order to unlock the possibility for energy-neutral WSNs that leverage
EH capability. A number of analytic and simulation results are presented in
order to illustrate the potential of the approach.Comment: 6 pages. This work will be presented at the 2013 IEEE Global
Communications Conference (GLOBECOM), Atlanta, US, December 201
A Novel Multistage Equalization Algorithm
A novel equalization algorithm utilizing improper nature of the intersymbol interference (ISI) is introduced in this paper. We show that full exploitation of the available information on the second-order statistics of the observed signal entails widely linear processing and that previously known linear minimum mean square error (MMSE) equalizers represent sub-optimum solutions. The proposed scheme is generally applicable for both real and complex signal constellations. The results show that accounting for the improper nature of the ISI leads to significant performance gain compared to conventional equalization schemes
Recommended from our members
Profit-oriented cooperative caching algorithm for hierarchical content centric networking
Multiabsorber Transition-Edge Sensors for X-Ray Astronomy
We are developing arrays of position-sensitive microcalorimeters for future x-ray astronomy applications. These position-sensitive devices commonly referred to as hydras consist of multiple x-ray absorbers, each with a different thermal coupling to a single-transition-edge sensor microcalorimeter. Their development is motivated by a desire to achieve very large pixel arrays with some modest compromise in performance. We report on the design, optimization, and first results from devices with small pitch pixels (<75 m) being developed for a high-angular and energy resolution imaging spectrometer for Lynx. The Lynx x-ray space telescope is a flagship mission concept under study for the National Academy of Science 2020 decadal survey. Broadband full-width-half-maximum (FWHM) resolution measurements on a 9-pixel hydra have demonstrated E(FWHM) = 2.23 0.14 eV at Al-K, E(FWHM) = 2.44 0.29 eV at Mn-K, and E(FWHM) = 3.39 0.23 eV at Cu-K. Position discrimination is demonstrated to energies below <1 keV and the device performance is well-described by a finite-element model. Results from a prototype 20-pixel hydra with absorbers on a 50-m pitch have shown E(FWHM) = 3.38 0.20 eV at Cr-K1. We are now optimizing designs specifically for Lynx and extending the number of absorbers up to 25/hydra. Numerical simulation suggests optimized designs could achieve 3 eV while being compatible with the bandwidth requirements of the state-of-the art multiplexed readout schemes, thus making a 100,000 pixel microcalorimeter instrument a realistic goal
Strong Near-Infrared Emission Interior to the Dust-Sublimation Radius of Young Stellar Objects MWC275 and AB Aur
Using the longest optical-interferometeric baselines currently available, we
have detected strong near-infrared (NIR) emission from inside the
dust-destruction radius of Herbig Ae stars MWC275 and AB Aur. Our
sub-milli-arcsecond resolution observations unambiguously place the emission
between the dust-destruction radius and the magnetospheric co-rotation radius.
We argue that this new component corresponds to hot gas inside the
dust-sublimation radius, confirming recent claims based on spectrally-resolved
interferometry and dust evaporation front modeling.Comment: 12 pages, 4 figures, Accepted for publication in ApJ
Millimeter imaging of HD 163296: probing the disk structure and kinematics
We present new multi-wavelength millimeter interferometric observations of
the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays
both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust
properties have been obtained comparing the observations with self-consistent
disk models for the dust and CO emission. The circumstellar disk is resolved
both in the continuum and in CO. We find strong evidence that the circumstellar
material is in Keplerian rotation around a central star of 2.6 Msun. The disk
inclination with respect to the line of sight is 46+-4 deg with a position
angle of 128+-4 deg. The slope of the dust opacity measured between 0.87 and 7
mm (beta=1) confirms the presence of mm/cm-size grains in the disk midplane.
The dust continuum emission is asymmetric and confined inside a radius of 200
AU while the CO emission extends up to 540 AU. The comparison between dust and
CO temperature indicates that CO is present only in the disk interior. Finally,
we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O.
We argue that these results support the idea that the disk of HD 163296 is
strongly evolved. In particular, we suggest that there is a strong depletion of
dust relative to gas outside 200 AU; this may be due to the inward migration of
large bodies that form in the outer disk or to clearing of a large gap in the
dust distribution by a low mass companion.Comment: Accepted for publication on A&A, 16 page
Correction: Carbon dioxide uptake from natural gas by binary ionic liquid–water mixtures
Correction for ‘Carbon dioxide uptake from natural gas by binary ionic liquid–water mixtures’ by Kris Anderson et al., Green Chem., 2015, DOI: 10.1039/c5gc00720h
- …