2,073 research outputs found
The Kiss of Death
AbstractThe programmed cell death (PCD) of neurons is generally thought to be cell autonomous and not to require a death signal from other cells. A recent study by MarıÌn-Teva et al., in this issue of Neuron, brings this theory into question and suggests that neighboring microglia actively participate in the PCD of Purkinje cells in the cerebellum
Temporal Ordering in Quantum Mechanics
We examine the measurability of the temporal ordering of two events, as well
as event coincidences. In classical mechanics, a measurement of the
order-of-arrival of two particles is shown to be equivalent to a measurement
involving only one particle (in higher dimensions). In quantum mechanics, we
find that diffraction effects introduce a minimum inaccuracy to which the
temporal order-of-arrival can be determined unambiguously. The minimum
inaccuracy of the measurement is given by dt=1/E where E is the total kinetic
energy of the two particles. Similar restrictions apply to the case of
coincidence measurements. We show that these limitations are much weaker than
limitations on measuring the time-of-arrival of a particle to a fixed location.Comment: New section added, arguing that order-of-arrival can be measured more
accurately than time-of-arrival. To appear in Journal of Physics
Statistical Communication Theory
Contains reports on two research projects.Joint Services Electronics Programs (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E)National Aeronautics and Space Administration (Grant NsG-496
Laboratory studies of lean combustion
The fundamental processes controlling lean combustion were observed for better understanding, with particular emphasis on the formation and measurement of gas-phase pollutants, the stability of the combustion process (blowout limits), methods of improving stability, and the application of probe and optical diagnostics for flow field characterization, temperature mapping, and composition measurements. The following areas of investigation are described in detail: (1) axisymmetric, opposed-reacting-jet-stabilized combustor studies; (2) stabilization through heat recirculation; (3) two dimensional combustor studies; and (4) spectroscopic methods. A departure from conventional combustor design to a premixed/prevaporized, lean combustion configuration is attractive for the control of oxides of nitrogen and smoke emissions, the promotion of uniform turbine inlet temperatures, and, possibly, the reduction of carbon monoxide and hydrocarbons at idle
Speech Communication
Contains reports on two research projects.U.S. Navy Office of Naval Research (Contract N00014-67-A-0204-0064)National Institutes of Health (Grant 5 ROl NS04332-09)National Science Foundation (Grant GK-31353
Stabilization of premixed combustors
In order to attain a sufficiently good insight into the fluid mechanical processes taking place in combustors operating on premixed, prevaporized, and preheated gases, an experimental facility was developed where the flow field is tractable both experimentally and analytically. The configuration adopted for the initial stage of the study is based on the use of a step to stabilized the combustion zone. The primary purpose of the experimental apparatus is to provide a facility for studying the effects of the elementary fluid mechanical processes on the stability of a model combustion system in order to further the understanding of the intrinsic mechanism of nonsteady phenomena, rather than to provide criteria for unstable operation of combustors, as expressed by overall performance parameters, such as the blowout and flashback limits
Time series aggregation, disaggregation and long memory
We study the aggregation/disaggregation problem of random parameter AR(1)
processes and its relation to the long memory phenomenon. We give a
characterization of a subclass of aggregated processes which can be obtained
from simpler, "elementary", cases. In particular cases of the mixture
densities, the structure (moving average representation) of the aggregated
process is investigated
Developing transferable management skills through Action Learning
There has been increasing criticism of the relevance of the Master of Business Administration (MBA) in developing skills and competencies. Action learning, devised to address problem-solving in the workplace, offers a potential response to such criticism. This paper offers an insight into one universityâs attempt to integrate action learning into the curriculum. Sixty-five part-time students were questioned at two points in their final year about their action learning experience and the enhancement of relevant skills and competencies. Results showed a mixed picture. Strong confirmation of the importance of selected skills and competencies contrasted with weaker agreement about the extent to which these were developed by action learning. There was, nonetheless, a firm belief in the positive impact on the learning process. The paper concludes that action learning is not a panacea but has an important role in a repertoire of educational approaches to develop relevant skills and competencies
Thermodynamics with long-range interactions: from Ising models to black-holes
New methods are presented which enables one to analyze the thermodynamics of
systems with long-range interactions. Generically, such systems have entropies
which are non-extensive, (do not scale with the size of the system). We show
how to calculate the degree of non-extensivity for such a system. We find that
a system interacting with a heat reservoir is in a probability distribution of
canonical ensembles. The system still possesses a parameter akin to a global
temperature, which is constant throughout the substance. There is also a useful
quantity which acts like a {\it local temperatures} and it varies throughout
the substance. These quantities are closely related to counterparts found in
general relativity. A lattice model with long-range spin-spin coupling is
studied. This is compared with systems such as those encountered in general
relativity, and gravitating systems with Newtonian-type interactions. A
long-range lattice model is presented which can be seen as a black-hole analog.
One finds that the analog's temperature and entropy have many properties which
are found in black-holes. Finally, the entropy scaling behavior of a
gravitating perfect fluid of constant density is calculated. For weak
interactions, the entropy scales like the volume of the system. As the
interactions become stronger, the entropy becomes higher near the surface of
the system, and becomes more area-scaling.Comment: Corrects some typos found in published version. Title changed 22
pages, 2 figure
- âŠ